5 research outputs found

    Gonadal-sparing total body irradiation with the use of helical tomotherapy for nonmalignant indications

    Get PDF
    Background: The aim was to demonstrate the feasibility and technique of gonadal sparing total body irradiation (TBI) with helical tomotherapy. Total body irradiation is a common part of the conditioning regimen prior to allogeneic stem cell transplantation. Shielding or dose-reduction to the gonads is often desired to preserve fertility, particularly in young patients undergoing transplant for non-malignant indications. Helical tomotherapy (HT) has been shown to be superior to traditional TBI delivery for organ at risk (OAR) doses and dose homogeneity. Materials and methods: We present two representative cases (one male and one female) to illustrate the feasibility of this technique, each of whom received 3Gy in a single fraction prior to allogeneic stem cell transplant for benign indications. The planning target volume (PTV) included the whole body with a subtraction of OARs including the lungs, heart, and brain (each contracted by 1cm) as well as the gonads (testicles expanded by 5 cm and ovaries expanded by 0.5 cm). Results: For the male patient we achieved a homogeneity index of 1.35 with a maximum and median planned dose to the testes of 0.53 Gy and 0.35 Gy, respectively. In-vivo dosimetry demonstrated an actual received dose of 0.48 Gy. For the female patient we achieved a homogeneity index of 1.13 with a maximum and median planned dose to the ovaries of 1.66 Gy and 0.86 Gy, respectively. Conclusion: Gonadal sparing TBI is feasible and deliverable using HT in patients with non-malignant diseases requiring TBI as part of a pre-stem cell transplant conditioning regimen

    High dose bystander effects in spatially fractionated radiation therapy

    Get PDF
    Traditional radiotherapy of bulky tumors has certain limitations. Spatially fractionated radiation therapy (GRID) and intensity modulated radiotherapy (IMRT) are examples of advanced modulated beam therapies that help in significant reductions in normal tissue damage. GRID refers to the delivery of a single high dose of radiation to a large treatment area that is divided into several smaller fields, while IMRT allows improved dose conformity to the tumor target compared to conventional three-dimensional conformal radiotherapy. In this review, we consider spatially fractionated radiotherapy approaches focusing on GRID and IMRT, and present complementary evidence from different studies which support the role of radiation induced signaling effects in the overall radiobiological rationale for these treatments
    corecore