16 research outputs found

    A multihost bacterial pathogen overcomes continuous population bottlenecks to adapt to new host species

    Get PDF
    While many bacterial pathogens are restricted to single host species, some have the capacity to undergo host switches, leading to the emergence of new clones that are a threat to human and animal health. However, the bacterial traits that underpin a multihost ecology are not well understood. Following transmission to a new host, bacterial populations are influenced by powerful forces such as genetic drift that reduce the fixation rate of beneficial mutations, limiting the capacity for host adaptation. Here, we implement a novel experimental model of bacterial host switching to investigate the ability of the multihost pathogen Staphylococcus aureus to adapt to new species under continuous population bottlenecks. We demonstrate that beneficial mutations accumulated during infection can overcome genetic drift and sweep through the population, leading to host adaptation. Our findings highlight the remarkable capacity of some bacteria to adapt to distinct host niches in the face of powerful antagonistic population forces.status: publishe

    Virus satellites drive viral evolution and ecology

    Get PDF
    Virus satellites are widespread subcellular entities, present both in eukaryotic and in prokaryotic cells. Their modus vivendi involves parasitism of the life cycle of their inducing helper viruses, which assures their transmission to a new host. However, the evolutionary and ecological implications of satellites on helper viruses remain unclear. Here, using staphylococcal pathogenicity islands (SaPIs) as a model of virus satellites, we experimentally show that helper viruses rapidly evolve resistance to their virus satellites, preventing SaPI proliferation, and SaPIs in turn can readily evolve to overcome phage resistance. Genomic analyses of both these experimentally evolved strains as well as naturally occurring bacteriophages suggest that the SaPIs drive the coexistence of multiple alleles of the phage-coded SaPI inducing genes, as well as sometimes selecting for the absence of the SaPI depressing genes. We report similar (accidental) evolution of resistance to SaPIs in laboratory phages used for Staphylococcus aureus typing and also obtain the same qualitative results in both experimental evolution and phylogenetic studies of Enterococcus faecalis phages and their satellites viruses. In summary, our results suggest that helper and satellite viruses undergo rapid coevolution, which is likely to play a key role in the evolution and ecology of the viruses as well as their prokaryotic hosts

    Phage-inducible chromosomal islands as a diagnostic platform to capture and detect bacterial pathogens

    Get PDF
    Phage-inducible chromosomal islands (PICIs) are a family of phage satellites that hijack phage components to facilitate their mobility and spread. Recently, these genetic constructs are repurposed as antibacterial drones, enabling a new toolbox for unorthodox applications in biotechnology. To illustrate a new suite of functions, the authors have developed a user-friendly diagnostic system, based upon PICI transduction to selectively enrich bacteria, allowing the detection and sequential recovery of Escherichia coli and Staphylococcus aureus. The system enables high transfer rates and sensitivities in comparison with phages, with detection down to ≈50 CFU mL−1. In contrast to conventional detection strategies, which often rely on nucleic acid molecular assays, and cannot differentiate between dead and live organisms, this approach enables visual sensing of viable pathogens only, through the expression of a reporter gene encoded in the PICI. The approach extends diagnostic sensing mechanisms beyond cell-free synthetic biology strategies, enabling new synthetic biology/biosensing toolkits

    Hijacking the hijackers: Escherichia coli pathogenicity islands redirect helper phage packaging for their own benefit

    Get PDF
    Phage-inducible chromosomal islands (PICIs) represent a novel and universal class of mobile genetic elements, which have broad impact on bacterial virulence. In spite of their relevance, how the Gram-negative PICIs hijack the phage machinery for their own specific packaging and how they block phage reproduction remains to be determined. Using genetic and structural analyses, we solve the mystery here by showing that the Gram-negative PICIs encode a protein that simultaneously performs these processes. This protein, which we have named Rpp (for redirecting phage packaging), interacts with the phage terminase small subunit, forming a heterocomplex. This complex is unable to recognize the phage DNA, blocking phage packaging, but specifically binds to the PICI genome, promoting PICI packaging. Our studies reveal the mechanism of action that allows PICI dissemination in nature, introducing a new paradigm in the understanding of the biology of pathogenicity islands and therefore of bacterial pathogen evolution

    The phage-inducible chromosomal islands: a family of highly evolved molecular parasites

    No full text
    The phage-inducible chromosomal islands (PICIs) are a family of highly mobile genetic elements that contribute substantively to horizontal gene transfer, host adaptation, and virulence. Initially identified in Staphylococcus aureus, these elements are now thought to occur widely in gram-positive bacteria. They are molecular parasites that exploit certain temperate phages as helpers, using a variety of elegant strategies to manipulate the phage life cycle and promote their own spread, both intra- and intergenerically. At the same time, these PICI-encoded mechanisms severely interfere with helper phage reproduction, thereby enhancing survival of the bacterial population. In this review we discuss the genetics and the life cycle of these elements, with special emphasis on how they interact and interfere with the helper phage machinery for their own benefit. We also analyze the role that these elements play in driving bacterial and viral evolution

    The ClpX protease is essential for inactivating the CI master repressor and completing prophage induction in Staphylococcus aureus

    Get PDF
    Funding: This work was supported by grants MR/M003876/1 and MR/S00940X/1 from the Medical Research Council (MRC, UK; https://mrc.ukri.org), BB/N002873/1 and BB/S003835/1 from the Biotechnology and Biological Sciences Research Council (BBSRC, UK; https://bbsrc.ukri.org), and Wellcome Trust 201531/Z/16/Z (https://wellcome.org), to J.R.P. M.A.T. was funded by a PhD studentship provided by Al Baha University-Kingdom of Saudi Arabia (bu.edu.sa).Bacteriophages (phages) are the most abundant biological entities on Earth, exerting a significant influence on the dissemination of bacterial virulence, pathogenicity, and antimicrobial resistance. Temperate phages integrate into the bacterial chromosome in a dormant state through intricate regulatory mechanisms. These mechanisms repress lytic genes while facilitating the expression of integrase and the CI master repressor. Upon bacterial SOS response activation, the CI repressor undergoes auto-cleavage, producing two fragments with the N-terminal domain (NTD) retaining significant DNA-binding ability. The process of relieving CI NTD repression, essential for prophage induction, remains unknown. Here we show a specific interaction between the ClpX protease and CI NTD repressor fragment of phages Ф11 and 80α in Staphylococcus aureus. This interaction is necessary and sufficient for prophage activation after SOS-mediated CI auto-cleavage, defining the final stage in the prophage induction cascade. Our findings unveil unexpected roles of bacterial protease ClpX in phage biology.Publisher PDFPeer reviewe

    The ClpX protease is essential for removing the CI master repressor and completing prophage induction in Staphylococcus aureus

    No full text
    Bacteriophages (phages) are the predominant biological entities on the planet and play an important role in the spread of bacterial virulence, pathogenicity, and antimicrobial resistance. After infection, temperate phages can integrate in the bacterial chromosome thanks to the expression of the prophage-encoded CI master repressor. Upon SOS induction, and promoted by RecA*, CI auto-cleaves generating two fragments, one containing the N-terminal domain (NTD), which retains strong DNA-binding capacity, and other corresponding to the C-terminal part of the protein. However, it is unknown how the CI NTD is removed, a process that is essential to allow prophage induction. Here we identify for the first time that the specific interaction of the ClpX protease with the CI NTD repressor fragment is essential and sufficient for prophage activation after SOS-mediated CI autocleavage, defining the final stage in the prophage induction cascade. Our results provide unexpected roles for the bacterial protease ClpX in phage biology.Competing Interest StatementThe authors have declared no competing interest

    Bacteriophage moonlighting proteins in the control of bacterial pathogenicity

    No full text
    corecore