12,870 research outputs found

    A new formulation of compartmental epidemic modelling for arbitrary distributions of incubation and removal times

    Full text link
    The paradigm for compartment models in epidemiology assumes exponentially distributed incubation and removal times, which is not realistic in actual populations. Commonly used variations with multiple exponentially distributed variables are more flexible, yet do not allow for arbitrary distributions. We present a new formulation, focussing on the SEIR concept that allows to include general distributions of incubation and removal times. We compare the solution to two types of agent-based model simulations, a spatially homogeneous one where infection occurs by proximity, and a model on a scale-free network with varying clustering properties, where the infection between any two agents occurs via their link if it exists. We find good agreement in both cases. Furthermore a family of asymptotic solutions of the equations is found in terms of a logistic curve, which after a non-universal time shift, fits extremely well all the microdynamical simulations. The formulation allows for a simple numerical approach; software in Julia and Python is provided.Comment: 21 pages, 11 figures. v2 matches published version: improved presentation (including title, abstract and references), results and conclusions unchange

    Mixed action computations on fine dynamical lattices

    Get PDF
    We report on our first experiences in simulating Neuberger valence fermions on CLS Nf=2N_f=2 configurations with light sea quark masses and small lattice spacings. Valence quark masses are considered that allow to explore the matching to (partially quenched) chiral perturbation theory both in the ϵ\epsilon- and pp-regimes. The setup is discussed, and first results are presented for spectral observables.Comment: 7 pages. Presented at the XXVII International Symposium on Lattice Field Theory, July 26-31, 2009, Peking University, Beijing, Chin

    Observation of magnetization reversal in epitaxial Gd0.67Ca0.33MnO3 thin films

    Get PDF
    High quality epitaxial thin films of Gd0.67Ca0.33MnO3 have been deposited onto (100) SrTiO3 substrates by pulsed-laser deposition. Enhanced properties in comparison with bulk samples were observed. The magnetic transition temperature (Tc) of the as-grown films is much higher than the corresponding bulk values. Most interestingly, magnetization measurements performed under small applied fields, exhibit magnetization reversals below Tc, no matter whether the film is field-cooled (FC) or zero-field-cooled (ZFC). A rapid magnetization reversal occurs at 7 K when field cooled, while as for the ZFC process the magnetization decreases gradually with increasing temperatures, taking negative values above 7 K and changing to positive values again, above 83 K. In higher magnetic fields the magnetization does not change sign. The reversal mechanism is discussed in terms of a negative exchange f-d interaction and magnetic anisotropy, this later enhanced by strain effects induced by the lattice mismatch between the film and the substrate.Comment: 16 pages, 4 figure
    • …
    corecore