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High-quality epitaxial thin filmss,200 nm thickd of Gd0.67Ca0.33MnO3 have been deposited onto
s100d SrTiO3 substrates by pulsed-laser deposition. Enhanced properties in comparison with bulk
samples were observed. The magnetic transition temperaturesTcd of the as-grown films is much
higher than the corresponding bulk values. Most interestingly, magnetization measurements
performed under small applied fields, exhibit magnetization reversals belowTc, no matter whether
the film is field cooledsFCd or zero-field cooledsZFCd. A rapid magnetization reversal occurs at 7 K
when field cooled, while as for the ZFC process the magnetization decreases gradually with
increasing temperatures, taking negative values above 7 K and changing to positive values again,
above 83 K. In higher magnetic fields the magnetization does not change sign. The reversal
mechanism is discussed in terms of a negative exchangef-d interaction and magnetic anisotropy,
this later enhanced by strain effects induced by the lattice mismatch between the film and the
substrate. ©2005 American Institute of Physics. fDOI: 10.1063/1.1862787g

The mixed valent A1−xBxMnO3 perovskite manganites,
where A and B are rare-earth and divalent alkaline elements,
have received a great amount of attention due to their un-
usual magnetic properties and colossal magnetoresistance
effect.1–4 Recently, reports on gadolinium-based perovskites
have shown specific magnetic features, in particular a rever-
sal of the magnetization at low temperatures when cooled in
a magnetic field.5,6 Similar anomalies were later found in
praseodymium, neodymium, and cerium compounds,7–10 in
which we may find, for instance, an induced antiferromag-
netic coupling of the Mn spins with the Ce spins, leading to
a ferrimagnetic ground state.9

On the other hand, the capability to fabricate manganites
with unique physical properties into thin films makes it pos-
sible to create a rich variety of electronic and magnetic de-
vices. It is also well known that films may present interesting
physical properties, quite different from those of the materi-
als produced by bulk ceramic techniques or single crystals
with the same nominal composition, since lattice match be-
tween film and substrate is considered to be the most domi-
nant factor for the epitaxial growth.11–13 In this respect, we
have undertaken the elaboration of thin films of
Gd0.67Ca0.33MnO3 sGCMOd.

Thin films of Gd0.67Ca0.33MnO3 sGCMOd were prepared
by pulsed-laser depositionsPLDd technique. The target, of
nominal composition Gd0.67Ca0.33MnO3, was a sintered pel-
let, of approximately 92% of the theoretical density, prepared
by a conventional solid-state reaction process. Films were
synthesized on single-crystals100d SrTiO3 sSTOd substrates.

A detailed description of the deposition system is mentioned
elsewhere.14

GCMO films grown on STO substrates were found by
XRD to be single phase withs00,d orientation, without any
extra peaks due to impuritiessFig. 1d. In order to investigate
the crystal quality of these films, the rocking curves of the
s004d peaks were explored byv scan. Typical full width at
half maximum of all films obtained was comprised between
0.12° and 0.25°. Furthermore, the four peaks at 90° intervals
in thew scan make evident the existence of an in-plane order
of the films. These observations confirmed the high crystal-
line quality and good epitaxy of the GCMO thin films. In
addition, the estimated value of the out-of-plane lattice pa-
rameter for the film wasc/2=3.772 Å, almost identical to
the lattice constant of the perovskite Gd0.67Ca0.33MnO3 bulk
material which was used as target in the PLD experiment
sa/ Î2=3.7914,b/ Î2=3.9447, andc/2=3.771 Åd. As ex-
pected for epitaxial films, the in-plane lattice parametersa
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FIG. 1. u-2u XRD patterns of Gd0.67Ca0.33MnO3 films grown on STO sub-
strates. The inset depicts the rocking curve of thes004d peak.
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andb match the substrate of SrTiO3 scubic,a=3.905 Åd pro-
vided that the film crystal lattice is rotated by 45° with re-
spect to the substrate. Therefore, the GCMO/STO films have
the film-substrate lattice mismatch,2.9% alonga direction,
,−1.0% alongb direction, with their in-plane lattice param-
eters expanded and compressed, respectively. Also, from the
SEM observation, the GCMO film is uniform and dense. The
film surface is covered with spherical grains with an average
lateral size of 30 nm.

The typical zero-field cooledsZFCd and field-cooled
sFCd magnetizations measured in a field of 20 Oe, as a func-
tion of temperature, are shown in Fig. 2. It is immediately
seen that the ordering temperatureTc from a paramagnetic to
a ferrimagnetic state is approximately 105 K, which is 25 K
higher than that of the bulk of the same compositionsTc

,80 Kd.5,6 This difference inTc is similar to what has been
observed in La1−xBaxMnO3 thin films13 and can be attributed
to the lattice mismatch induced strains between the film and
the substrate. From Fig. 2, it is observed that the data present
a large irreversibility between ZFC and FC magnetizations.
During the FC process, the magnetizationMFC increases rap-
idly below Tc, showing a large maximum at aboutTcusp

FC

=50 K. Upon further cooling, the magnetization decreases,
intersects the temperature axis at a compensation tempera-
ture ofTcomp= ,7 K and becomes negative. The temperature
Tcomp is lower than that of the bulk Gd0.67Ca0.33MnO3
sTcomp,15 Kd.5,6 This unusual phenomenon is named mag-
netization reversal, which indicates that below the compen-
sation temperature, the magnetization inverts its sign and
points opposite to the direction of the applied magnetic
field.7–10

During ZFC, that is, with increasing temperature from
5 K, the magnetization decreases gradually, crossing zero at
approximatelyTS1= ,7 K and reaching a minimum negative
value atT= ,50 K. Upon further warming,MZFC increases,
crosses zero at a second compensation temperature ofTS2
,83 K, reaching a small peak atTcusp

ZFC=95 K, before de-
creasing gradually toward a paramagnetic state. Such an
anomaly is much more pronounced in low magnetic fields.

Figure 3 shows representativeM-T curves measured un-
der different applied fields between 20 and 5000 Oe. Taking
these curves into consideration, one can note the following
features:s1d All FC curves tend to cross aroundTcomp=7 K
over the whole range of the applied fields. However, for
5 kOe, the magnetization no longer becomes negative, but
instead has a minimum atT=7 K. s2d Applying a field above
250 Oe turns the ZFC magnetization to be positive in the
whole temperature regionsinset in Fig. 3d. s3d The two well-

defined maxima observed in the magnetization exhibit quite
different behaviors as a function of the applied field: while
Tcusp

FC stays at a rather constant value of 50 K, the other one
sat Tcusp

ZFCd decreases with the applied field, going from 95 K
sat H=20 Oed down to 50 K, the same value asTcusp

FC . This
situation is reversed to that observed in the GCMO bulk,
whereTcusp

ZFC stays constant at,50 K, while Tcusp
FC increases

with increasing the field, until it reaches the same value as
Tcusp

FC .6 In sufficiently large fieldss5 kOed there is no differ-
ence between theMZFC andMFC curves.

In order to understand more deeply the origin of the
magnetization reversal in the GCMO films, we have per-
formed magnetization loops at temperatures comprised be-
tween 5 K andTc, as illustrated in Fig. 4. These measure-
ments were performed on a ZFC sample, under an external
field varying between −20 and +20 kOe. At a temperature of
5 K, the film is characterized by a coercive forceHc of
1.6 kOe; the magnetization exhibits no saturation in fields of
up to 50 kOesnot shownd. The continuous increase of mag-
netization with the applied field indicates a ferrimagnetic-
like state in the GCMO films.

As the temperature is increased to 20 K, theM-H behav-
ior is quite different: the magnetization rises up dramatically
at low field and tends to saturate at high field. The hysteresis
loop has a coercivity of about 2.2 kOe, larger than that at
5 K. In contrast, the bulk of the same composition has a
much smallerHc at the same temperature.6 With increasing
temperature, the magnetization saturates more easily and the
coercivity decrease quickly. At 90 K, temperature which al-
most corresponds to the peak of the ZFC curve, theM-H
curve shows no hysteresis, but it is highly nonlinear, indicat-
ing a ferromagnetic behavior. If the coercive field is plotted
as a function of temperaturesinset in Fig. 4d, there is a clear
maximum inHcsTd around 15 K. This behavior differs from
that of the bulk of the same composition in whichHc de-
creases continuously from 5 K toTc,

6 and suggests that the
unusual behavior of the ZFC magnetization may be attrib-
uted to associated domain effects or change in the magnetic
anisotropy, as will be discussed in more detail later.

The above magnetic phenomena during FC can be easily
understood as the existence of two magnetic sublattices, one
aligned with the applied field and the other anti-aligned with
the field. In a field-cooled measurementsFCd under small

FIG. 2. Temperature dependence of the magnetization for the GCMO thin
film under ZFC and FC conditions, measured under 20 Oe. The inset shows
an enlarged part of Fig. 2.

FIG. 3. Magnetization vs temperature in different magnetic fields, measured
under ZFCstop paneld or FC sbottom paneld conditions. The inset shows an
enlarged part of Fig. 3stop paneld.
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fields, as the temperature is decreased fromTc, the Mn sub-
lattice orders ferromagnetically, creating a local field at the
Gd site; at the same time, due to the negativef-d exchange
interaction, the Gd sublattice tends to align antiparallel to
such local field. If the anti-aligned sublattice magnetization
grows more rapidlyse.g., proportional toT−1d with decreas-
ing temperature than the aligned one, theTcomp is reached.
Then the total magnetic moment becomes negative when
uMGdu.MMn. The shape of the curve when field cooled is
very similar to that for Nd1−xCaxMnO3 and
Dy0.67Ca0.33MnO3,

15,16 implying the same origin for both
phenomena.

When the applied magnetic field is high enough, it over-
comes the internal field produced by the Mn sublattice, and
will predominate over the gadolinium susceptibility. The Gd
ions remain parallel to the external field and the reversal of
magnetization phenomenon is suppressed, although a strong
dip in the magnetization is still observed at about 7 K. For
instance, such is the case when the external magnetic field is
5 kOe or abovesFig. 3d.

On the other hand, the negative magnetization of the
ZFC curve observed in the GCMO thin films is quite an
unusual featuresFig. 2d. Actually, multiple, reversible sign
changes of the magnetization with temperature have been
observed in many of the perovskite oxides,7,17–20but we are
not aware of previous observations in the GCMO systems. A
possible explanation for this behavior is the strong magnetic
anisotropy associated with Mn3+ ions occupying Jahn–Teller
distorted MnO6 octahedra, which may be caused by the
structure distortion of our thin films, e.g., deformation and
rotation of the MnO6 octahedron due to large lattice mis-
match between the GCMO film and the substrate STO. This
scenario is strongly supported by a comparison of our data
with magnetization measurements on bulk GCMO samples.6

In the FC mode, the temperature dependence of the magne-
tization is qualitatively the same for the bulk and our thin
film. However, in the ZFC mode, the bulk magnetization
shows almost no negative values. This comparison strongly
suggests that the magnetization reversal found in the ZFC
process may result from the large magnetic anisotropy.

Indeed, during the ZFC process, the Mn magnetic do-
mains are locked in random directions, giving rise to an an-
tiferromagnetic canted state characteristic of these perovskite
materials.21 When an external field of 20 Oe is applied at low
temperaturese.g., 5 Kd, the total magnetizationsMMn-MGdd
takes a small positive value because the Gd moments are not
large enough to overcome the local field. When increasing
the temperature from 5 K, theMGd decreases more quickly
than theMMn magnetization. Since the measurement field is
much smaller than the coercivitysHc=1600 Oe at 5 Kd, it is
hard for the Mn domains to rotate. As a result, the total
magnetization decreases, crossing zerosat approximately
Ts1=7 Kd, to a minimum negative value atT=50 K. Due to
the small coercivity above 50 KsHc=100 Oe at 50 Kd, the
domains can gradually rotate to the external field direction
ensuring that the total magnetization parallels theH direc-
tion. Meanwhile, the anti-aligned sublattice magnetization
grows more slowly with increasing temperature than the
aligned one. Hence, a quick increase of magnetization from
50 to about 95 K. At higher temperatures, the magnetic or-
dering is restrained, reaching the paramagnetic state and de-
creasing afterwards.

An alternative explanation may come from geometrical
considerations, since the particles in a bulk material will tend
to reorient and/or their spins will flip in the presence of an
applied field in order to reach a stable state with moments
aligned along the field direction. On the contrary, such a
phenomenon is much harder to occur in epitaxially grown
thin films, since in addition to different grain sizes and grain-
boundary conditions, the magnetic anisotropy at the bound-
aries is quite different from that of bulks because of lower
symmetries and different crystal-field splitting.
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