366 research outputs found

    Optimization of the Process of Synthesis of Lignin – Phenol -Formaldehyde Organic Aerogels

    Get PDF
    Методом экспериментально-статистического анализа изучено влияние массового соотношения фенола и лигнина (Х1) и массового соотношения их смеси с формальдегидом (Х2) на значения параметров пористой структуры получаемых органических лигнин- фенол-формальдегидный аэрогелей. На основании оценки полученной математической модели установлено, что при соблюдении условий Х1 = 0,65-0,78, а Х2 = 1,7 прогнозируемые максимальные значения удельной поверхности и объема мезопор получаемого органического аэрогеля составляют 485 м2/г и 1,85 г/см3 соответственно. При оптимальных значениях Х1 = 0,25, а Х2 = 1,25 рассчитанные значения объема макропор достигают 4,05 см3/г, а общего объема пор – 4,67 см3/гThe method of experimental statistical analysis was applied to study the effect of mass ratio of phenol and lignin (factor X1) and the weight ratio of thereof mixture with formaldehyde (factor X2) on the values of specific parameters of the porous structure obtained organic lignin – phenolformaldehyde aerogels. Based on the evaluation of the mathematical model was established that under the observance terms of X1 = 0,65-0,78 and X2 = 1,7 the maximum predicted values of the specific surface area and mesopore volume of obtained organic aerogels are 485 m2 /g and 1,83 cm3/g, accordingly. Under optimal values of X1 = 0.25, and X2 = 1.25 calculated values reach a macropore volume of 4.05 cm3 /g and total pore volume – 4.67 cm 3 /

    On the back reaction of gravitational and particle emission and absorption from straight thick cosmic strings: A toy model

    Full text link
    The emission and absorption of gravitational waves and massless particles of an infinitely long straight cosmic string with finite thickness are studied. It is shown in a general term that the back reaction of the emission and absorption {\em always} makes the symmetry axis of the string singular. The singularity is a scalar singularity and cannot be removed.Comment: To appear in Gen. Relativ. Gra

    Orbital ordering in transition-metal compounds: I. The 120-degree model

    Full text link
    We study the classical version of the 120-degree model. This is an attractive nearest-neighbor system in three dimensions with XY (rotor) spins and interaction such that only a particular projection of the spins gets coupled in each coordinate direction. Although the Hamiltonian has only discrete symmetries, it turns out that every constant field is a ground state. Employing a combination of spin-wave and contour arguments we establish the existence of long-range order at low temperatures. This suggests a mechanism for a type of ordering in certain models of transition-metal compounds where the very existence of long-range order has heretofore been a matter of some controversy.Comment: 40 pages, 1 eps fig; a revised version correcting a bunch of small error

    Optical monitoring of the gravitationally lensed quasar Q2237+0305 from APO between June 1995 and January 1998

    Get PDF
    We present a data set of images of the gravitationally lensed quasar Q2237+0305, that was obtained at the Apache Point Observatory (APO) between June 1995 and January 1998. Although the images were taken under variable, often poor seeing conditions and with coarse pixel sampling, photometry is possible for the two brighter quasar images A and B with the help of exact quasar image positions from HST observations. We obtain a light curve with 73 data points for each of the images A and B. There is evidence for a long (>~ 100 day) brightness peak in image A in 1996 with an amplitude of about 0.4 to 0.5 mag (relative to 1995), which indicates that microlensing has been taking place in the lensing galaxy. Image B does not vary much over the course of the observation period. The long, smooth variation of the light curve is similar to the results from the OGLE monitoring of the system (Wozniak et al. 2000a).Comment: 8 pages, 5 figures; accepted for publication in A&

    Mapping the 3-D dark matter with weak lensing in COMBO-17

    Full text link
    We present a 3-dimensional lensing analysis of the z=0.16 supercluster A901/2, resulting in a 3-D map of the dark matter distribution within a 3 X 10^{5} [Mpc]^3 volume from the COMBO-17 survey. We perform a chi^2-fit of isothermal spheres to the tangential shear pattern around each cluster as a function of redshift to estimate the 3-D positions and masses of the main clusters in the supercluster from lensing alone. We then present the first 3-D map of the dark matter gravitational potential field, Phi, using the Kaiser-Squires (1993) and Taylor (2001) inversion methods. These maps clearly show the potential wells of the main supercluster components, including a new cluster behind A902, and demonstrates the applicability of 3-D dark matter mapping and projection free-mass-selected cluster finding to current data. Finally, we develop the halo model of dark matter and galaxy clustering and compare this with the auto-and cross-correlation functions of the 3-D gravitational potential, galaxy number densities and galaxy luminosity densities measured in the A901/2 field. We find significant anti-correlations between the gravitational potential field and the galaxy number density and luminosities, as expected due to baryonic infall into dark matter concentrations. We find good agreement with the halo model for the number densities and luminosity correlation functions.Comment: Submitted to MNRAS; 21 pages, 18 figure

    PEN experiment: a precise measurement of the pi+ -> e+ nu decay branching fraction

    Full text link
    A new measurement of Bπe2B_{\pi e2}, the π+e+ν(γ)\pi^+ \to e^+\nu(\gamma) decay branching ratio, is currently under way at the Paul Scherrer Institute. The present experimental result on Bπe2B_{\pi e2} constitutes the most accurate test of lepton universality available. The accuracy, however, still lags behind the theoretical precision by over an order of magnitude. Because of the large helicity suppression of the πe2\pi_{e2} decay, its branching ratio is susceptible to significant contributions from new physics, making this decay a particularly suitable subject of study.Comment: 4 pages, 3 figures, talk given at the Tenth Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2009), La Jolla/San Diego, CA, 26-31 May 2009; to appear in Proceedings to be published by the American Institute of Physic

    Ab initio calculation of resonant X-ray scattering in Manganites

    Full text link
    We study the origin of the resonant x-ray signal in manganites and generalize the resonant cross-section to the band structure framework. With {\it ab initio} LSDA and LSDA+U calculations we determine the resonant x-ray spectrum of LaMnO3_3. The calculated spectrum and azimuthal angle dependence at the Mn KK-edge reproduce the measured data without adjustable parameters. The intensity of this signal is directly related to the orthorhombicity of the lattice. We also predict a resonant x-ray signal at the La LL-edge, caused by the tilting of the MnO6_6 octahedra. This shows that the resonant x-ray signal in the hard x-ray regime can be understood in terms of the band structure of a material and is sensitive to the fine details of crystal structure.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev.

    A Sharp Event in the Image a Light Curve of the Double Quasar 0957+561 and Prediction of the 1996 Image B Light Curve

    Get PDF
    CCD photometry of the gravitational lens system 0957+561A,B in the g and r bands was obtained on alternate nights, weather permitting, from December 1994 through May 1995 using the Double Imaging Spectrograph (DIS) on the Apache Point Observatory (APO) 3.5-meter telescope. The remote observing and fast instrument change capabilities of this facility allowed accumulation of light curves sampled frequently and consistently. The Honeycutt ensemble photometry algorithm was applied to the data set and yielded typical relative photometric errors of approximately 0.01 magnitudes. Image A exhibited a sharp drop of about 0.1 magnitudes in late December 1994; no other strong features were recorded in either image. This event displays none of the expected generic features of a microlensing-induced flux variation and is likely to be intrinsic to the quasar; if so, it should also be seen in the B image with the lensing differential time delay. We give the expected 1996 image B light curves based on two values of the time delay and brightness ratio which have been proposed and debated in the literature. Continued monitoring of the system in the first half of 1996 should easily detect the image B event and thus resolve the time-delay controversy.Comment: submitted to ApJ Letters, 15 pages, uuencoded PostScript with figures included; also available through WWW at http://www.astro.princeton.edu/~library/prep.htm

    Constraining the dark energy with galaxy clusters X-ray data

    Full text link
    The equation of state characterizing the dark energy component is constrained by combining Chandra observations of the X-ray luminosity of galaxy clusters with independent measurements of the baryonic matter density and the latest measurements of the Hubble parameter as given by the HST key project. By assuming a spatially flat scenario driven by a "quintessence" component with an equation of state px=ωρxp_x = \omega \rho_x we place the following limits on the cosmological parameters ω\omega and Ωm\Omega_{\rm{m}}: (i) 1ω0.55-1 \leq \omega \leq -0.55 and Ωm=0.320.014+0.027\Omega_{\rm m} = 0.32^{+0.027}_{-0.014} (1σ\sigma) if the equation of state of the dark energy is restricted to the interval 1ω<0-1 \leq \omega < 0 (\emph{usual} quintessence) and (ii) ω=1.290.792+0.686\omega = -1.29^{+0.686}_{-0.792} and Ωm=0.310.034+0.037\Omega_{\rm{m}} = 0.31^{+0.037}_{-0.034} (1σ1\sigma) if ω\omega violates the null energy condition and assume values <1< -1 (\emph{extended} quintessence or ``phantom'' energy). These results are in good agreement with independent studies based on supernovae observations, large-scale structure and the anisotropies of the cosmic background radiation.Comment: 6 pages, 4 figures, LaTe
    corecore