195 research outputs found

    A three-stage approach for genome-wide association studies with family data for quantitative traits

    Get PDF
    Background: Genome-wide association (GWA) studies that use population-based association approaches may identify spurious associations in the presence of population admixture. In this paper, we propose a novel three-stage approach that is computationally efficient and robust to population admixture and more powerful than the family-based association test (FBAT) for GWA studies with family data. We propose a three-stage approach for GWA studies with family data. The first stage is to perform linear regression ignoring phenotypic correlations among family members. SNPs with a first stage p-value below a liberal cut-off (e.g. 0.1) are then analyzed in the second stage that employs a linear mixed effects (LME) model that accounts for within family correlations. Next, SNPs that reach genome-wide significance (e.g. 10−610^{-6} for 34,625 genotyped SNPs in this paper) are analyzed in the third stage using FBAT, with correction of multiple testing only for SNPs that enter the third stage. Simulations are performed to evaluate type I error and power of the proposed method compared to LME adjusting for 10 principal components (PC) of the genotype data. We also apply the three-stage approach to the GWA analyses of uric acid in Framingham Heart Study's SNP Health Association Resource (SHARe) project. Results: Our simulations show that whether or not population admixture is present, the three-stage approach has no inflated type I error. In terms of power, using LME adjusting PC is only slightly more powerful than the three-stage approach. When applied to the GWA analyses of uric acid in the SHARe project of FHS, the three-stage approach successfully identified and confirmed three SNPs previously reported as genome-wide significant signals. Conclusions: For GWA analyses of quantitative traits with family data, our three-stage approach provides another appealing solution to population admixture, in addition to LME adjusting for genetic PC

    Deep-coverage whole genome sequences and blood lipids among 16,324 individuals.

    Get PDF
    Large-scale deep-coverage whole-genome sequencing (WGS) is now feasible and offers potential advantages for locus discovery. We perform WGS in 16,324 participants from four ancestries at mean depth >29X and analyze genotypes with four quantitative traits-plasma total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol, and triglycerides. Common variant association yields known loci except for few variants previously poorly imputed. Rare coding variant association yields known Mendelian dyslipidemia genes but rare non-coding variant association detects no signals. A high 2M-SNP LDL-C polygenic score (top 5th percentile) confers similar effect size to a monogenic mutation (~30 mg/dl higher for each); however, among those with severe hypercholesterolemia, 23% have a high polygenic score and only 2% carry a monogenic mutation. At these sample sizes and for these phenotypes, the incremental value of WGS for discovery is limited but WGS permits simultaneous assessment of monogenic and polygenic models to severe hypercholesterolemia

    Exome Sequencing in Suspected Monogenic Dyslipidemias

    Get PDF
    Abstract BACKGROUND: -Exome sequencing is a promising tool for gene mapping in Mendelian disorders. We utilized this technique in an attempt to identify novel genes underlying monogenic dyslipidemias. METHODS AND RESULTS: -We performed exome sequencing on 213 selected family members from 41 kindreds with suspected Mendelian inheritance of extreme levels of low-density lipoprotein (LDL) cholesterol (after candidate gene sequencing excluded known genetic causes for high LDL cholesterol families) or high-density lipoprotein (HDL) cholesterol. We used standard analytic approaches to identify candidate variants and also assigned a polygenic score to each individual in order to account for their burden of common genetic variants known to influence lipid levels. In nine families, we identified likely pathogenic variants in known lipid genes (ABCA1, APOB, APOE, LDLR, LIPA, and PCSK9); however, we were unable to identify obvious genetic etiologies in the remaining 32 families despite follow-up analyses. We identified three factors that limited novel gene discovery: (1) imperfect sequencing coverage across the exome hid potentially causal variants; (2) large numbers of shared rare alleles within families obfuscated causal variant identification; and (3) individuals from 15% of families carried a significant burden of common lipid-related alleles, suggesting complex inheritance can masquerade as monogenic disease. CONCLUSIONS: -We identified the genetic basis of disease in nine of 41 families; however, none of these represented novel gene discoveries. Our results highlight the promise and limitations of exome sequencing as a discovery technique in suspected monogenic dyslipidemias. Considering the confounders identified may inform the design of future exome sequencing studies

    Association of Exome Sequences With Cardiovascular Traits among Blacks in the Jackson Heart Study

    Get PDF
    The correlation of null alleles with human phenotypes can provide insight into gene function in humans. In individuals of African ancestry, we set out to identify null and damaging missense variants, and test these variants for association with a range of cardiovascular phenotypes
    • …
    corecore