
Association of Exome Sequences With Cardiovascular Traits 
among Blacks in the Jackson Heart Study

Gina M. Peloso, PhD1,2,3, Leslie A. Lange, PhD4, Tibor V. Varga, PhD5, Deborah A. 
Nickerson, PhD6, Joshua D. Smith, PhD6, Michael E. Griswold, PhD7, Solomon Musani, 
PhD8, Linda M. Polfus, PhD9, Hao Mei, PhD7, Stacey Gabriel, PhD3, Rakale Collins Quarells, 
PhD10, David Altshuler, MD, PhD3,11, Eric Boerwinkle, PhD9, Mark J. Daly, PhD3,12, 
Benjamin Neale, PhD3,12, Adolfo Correa, MD, PhD13, Alex P. Reiner, MD14, James G. 
Wilson, MD15, and Sekar Kathiresan, MD2,3,11

1Department of Biostatistics, Boston University School of Public Health, Boston

2Center for Human Genetic Research, Massachusetts General Hospital, Boston

3Program in Medical and Population Genetics, Broad Institute, Cambridge, MA

4Department of Genetics, University of North Carolina, Chapel Hill, NC

5Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Lund University, 
Malmö, Sweden

6Department of Genome Sciences, University of Washington, Seattle, WA

7Center of Biostatistics & Bioinformatics, University of Mississippi Medical Center, Jackson, MS

8Department of Medicine, University of Mississippi Medical Center, Jackson, MS

9Human Genetics Center, University of Texas Health Science Center, Houston, TX

10Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA

11Department of Medicine, Harvard Medical School, Boston, MA

12Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston

13Departments of Pediatrics & Medicine, University of Mississippi Medical Center, Jackson, MS

14Department of Epidemiology, University of Washington School of Public Health, Seattle, WA

15Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS

Abstract

Background—The correlation of null alleles with human phenotypes can provide insight into 

gene function in humans. In individuals of African ancestry, we set out to identify null and 
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damaging missense variants, and test these variants for association with a range of cardiovascular 

phenotypes.

Methods and Results—We performed whole exome sequencing in 3,223 African American 

individuals from the Jackson Heart Study and found a total of 729,666 variant sites with minor 

allele frequency (MAF) < 5%, including 17,263 null variants and 49,929 missense variants 

predicted to be damaging by in silico algorithms. We tested null and damaging missense variants 

within each gene for association with 36 cardiovascular traits. We found three associations that 

met our pre-specified level of significance (α=1.1×10−7). Null and damaging missense variants in 

PCSK9 were associated with 36 mg/dl lower low density lipoprotein cholesterol (LDL-C) (p-

value=3×10−21). Three individuals in their 50s with complete PCSK9 deficiency (each compound 

heterozygote for PCSK9 p.Y142X and p.C679X) were identified, with one having a coronary 

artery calcification score in the 83rd-percentile despite a LDL-C of 32 mg/dl. A damaging 

missense variant in HBQ1 (p.G52A) was associated with a 2 pg/cell lower mean corpuscular 

hemoglobin (p-value=9×10−13) and rare damaging missense variants in VPS13A with higher red 

blood cell distribution width (p-value=9.9 × 10−8).

Conclusions—A limited number of null/damaging alleles with a large effect on cardiovascular 

traits were detectable in ~3,000 African American individuals.
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A compelling therapeutic target for lowering low-density lipoprotein cholesterol (LDL-C) 

emerged from human genetic studies - the proprotein convertase subtilisin/kexin type 9 gene 

(PCSK9)1. Null alleles (also termed loss-of-function [LoF] protein-coding sequence 

variants) in PCSK9 were identified in African Americans2 and shown to associate with 

lower plasma LDL-C levels2–4 as well as reduced risk for CHD (up to 88% reduction)5, 6. 

Based on this human genetic evidence as well as corroborating functional studies, several 

pharmaceutical companies have established drug development programs targeting PCSK97 

and two inhibitors have been approved for reducing LDL-C in individuals with heterozygous 

familial hypercholesterolemia and individuals with clinical atherosclerotic cardiovascular 

disease8, 9. Based on the PCSK9 example, it has been suggested that low-frequency or rare 

mutations of large effect may be paradigmatic for therapeutic target discovery10.

To address whether additional such examples can be readily identified, we sequenced the 

exomes of 3,223 individuals from the Jackson Heart Study (JHS), a prospective cohort of 

African Americans living in Jackson, Mississippi, and catalogued null as well as damaging 

missense mutations across 18,465 genes. Subsequently, we performed an association study 

of these variants with a range of quantitative and qualitative cardiovascular traits.

Peloso et al. Page 2

Circ Cardiovasc Genet. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methods

Study Participants

The JHS is a community-based longitudinal cohort study located in the Jackson, Mississippi 

metropolitan area designed to investigate the determinants of cardiovascular disease in 

African Americans11. JHS recruited 5,301 African Americans, aged between 35–84, 

between September 2000 and March 200811. The Institutional Review Board of the 

University of Mississippi Medical Center approved the study protocol and all participants 

provided written informed consent.

Exome Sequencing

Exome sequencing was performed at three sequencing centers (the Broad Institute [n = 

2,317], University of Washington [n = 481], and Baylor University [n = 475]) across 5 

projects (The U.S. National Heart, Lung, and Blood Institute’s [NHLBI] Exome Sequencing 

Project [ESP], Myocardial Infarction Genetics Consortium Exome Sequencing Project 

[MIGen ExS], CHARGE-S, Type 2 Diabetes Genetic Exploration by Next-generation 

sequencing in multi-Ethnic Samples [T2D-GENES], and Minority Health Genomics and 

Translational Research Bio-Repository Database [MH-GRID]) (Supplemental Table 1). The 

sequencing reads (i.e. fastq files) from exomes were aligned to the human genome reference 

(hg19) using bwa on a per lane basis and bam files were obtained from the three sequencing 

centers. The Genome Analysis Toolkit (GATK) v3.1 HaplotypeCaller algorithm was used 

for joint variant discovery and genotyping on both exomes and flanking 50bp of intronic 

sequence (http://www.broadinstitute.org/gatk/guide/article?id=3893). Single-sample gVCFs 

were created using the GATK HaplotypeCaller with the options -emitRefConfidence GVCF, 

--variant_index_type LINEAR, and --variant_index_parameter 128000. Then batches of 

~200 gVCFs were merged into a single gVCF using the CombineGVCF command in 

GATK. Finally, GenotypeGVCFs was run on the combined gVCFs to create the raw SNP 

and indel VCFs. As a majority of individuals were sequenced at the Broad Institute, we 

limited analysis to the sequence intervals captured by the Broad’s exome sequencing 

platform.

Variant Quality Control

GATK Variant Quality Score Recalibration (VQSR) was used with the recommended 

resources to filter variants. The SNP VQSR model was trained using HapMap3.3 and 1KG 

Omni 2.5 SNP sites and a 99.5% sensitivity threshold was applied to filter variants, while the 

INDEL VQSR model was trained using the Mills 1000G gold standard and Axiom Exome 

Plus sites for insertions/deletions and a 99.0% sensitivity threshold was applied to filter 

INDEL sites. Variants were filtered to VQSR PASS and quality depth (QD) ≥ 2. 

(Supplemental Table 2). Individual genotypes were set to missing if depth < 5.

Sample Quality Control

We performed quality control on the jointly-called samples. Individuals were checked for 

total number of variants, observed number of singletons and doubletons, Ti/Tv ratio, 

Het/Hom ratio, missingness, contamination with VerifyBamID12, and non-reference 
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concordance with available genotype data from the Illumina HumanExome BeadChip v1.0. 

Individuals that were outliers (> ± 3*interquartile range) on at least one metric were 

excluded (Supplemental Table 1, Supplemental Figure 1). Population structure was assessed 

using the multi-dimensional scaling (MDS) algorithm in the PLINK software13 and ten 

principal components of ancestry were obtained (Supplemental Figure 2).

Annotation

All variant sites were annotated with the Variant Effect Predictor algorithm (VEP; http://

useast.ensembl.org/info/docs/tools/vep) and dbSFP14 (https://sites.google.com/site/jpopgen/

dbNSFP). Analysis was limited to variants predicted to be null (nonsense, splice, frameshift) 

plus missense variation predicted to be damaging in at least five of the following seven 

variation prediction tools15: LRT16, Mutation Taster17, PolyPhen218 (HumDiv), PolyPhen2 

(HumVar), SIFT19, MutationAssessor20 and FATHMM21.

Phenotypes

We analyzed 36 cardiovascular traits (Figure 1) available in the Jackson Heart Study 

Vanguard Center data package (https://www.jacksonheartstudy.org/jhsinfo/ForResearchers/

VanguardCenters/tabid/171/Default.aspx). For participants who were taking antihypertensive 

medication, we added 10 mm Hg to observed systolic blood pressure (SBP) values and 5 

mm Hg to diastolic blood pressure (DBP) values22. We adjusted the total cholesterol values 

for individuals on lipid lowering medication by replacing their total cholesterol values by 

total cholesterol divided by 0.823. No adjustment was made on high-density lipoprotein 

cholesterol (HDL-C) or triglycerides. Only fasting lipid measures were used and LDL-C was 

calculated using the Friedewald equation for those with triglycerides < 400 mg/dl, using the 

lipid adjusted total cholesterol for those on treatment.

Individuals with diabetes were excluded in analyses of fasting plasma glucose, fasting 

insulin, HOMA-IR, HOMA-B, and HbA1c. Individuals with QRS > 120, atrial fibrillation, 

or coronary heart disease were excluded for analysis of QRS interval. Individuals with QRS 

≥ 120, ECG heart rate < 40, ECG heart rate > 120, or with atrial fibrillation were excluded 

from the analysis of QT interval. Individuals with end stage renal disease (ESRD) defined as 

eGRF < 15 or reporting being on dialysis, hemoglobinopathy defined as being homozygous 

for rs334, or myelotoxic drug use were excluded from the blood cell trait analyses.

Non-normality of the following raw traits was resolved by a natural log transform before 

analysis: triglycerides, leptin, hsCRP, endothelin, renin, aldosterone, and adiponectin. Non-

normality was resolved by the log transformation.

Association Analysis

We performed gene-based analyses of 36 cardiovascular phenotypes. We limited analysis to 

null mutations plus missense variants predicted to be damaging by at least 5 of 7 in silico 
prediction algorithms (LRT, Mutation Taster, PolyPhen2 (HumDiv), PolyPhen2 (HumVar), 

SIFT, MutationAssessor and FATHMM)15. We aggregated variants with minor allele 

frequency (MAF) < 5% within each gene using four sets of variants: (1) null mutations only, 

(2) null mutations plus missense variants predicted to be damaging by 7 of 7 in silico 
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prediction algorithms, (3) null mutations plus missense variants predicted to be damaging in 

at least 6 of 7 in silico prediction algorithms, and (4) null mutations plus missense variants 

predicted to be damaging in at least 5 of 7 in silico prediction algorithms. All associations 

were performed using the EPACTS (http://genome.sph.umich.edu/wiki/EPACTS) software. 

EPACTS (Efficient and Parallelizable Association Container Toolbox) is a software pipeline 

to perform statistical tests of association using sequence data. It implements the EMMAX24 

(Efficient Mixed Model Association eXpedited) model, a mixed model association approach 

that captures pedigree, cryptic relatedness, and population structure by using a covariance 

matrix estimated from genome-wide data. To apply the EMMAX model, we used the epacts-

group command with the emmaxCMC test option to perform collapsing burden gene-based 

tests. The single command with the q.emmax test option in EPACTS was used to obtain the 

single variant results for each variant going into the gene-based test. We used an additive 

genetic model. A kinship matrix of all individuals was created with EPACTS and used in 

analyses. All analyses were adjusted for age, sex, and 4 principal components of ancestry. 

Analyses for QT interval and QRS additionally included adjustments for height and BMI.

We excluded results with ≤ 10 minor alleles contributing to the gene-based test to ensure 

robust association statistics. We set our significance threshold to 1.1 × 10−7 (0.05/[36 

traits*~12,500 genes after minor allele count exclusion]).

A Wilcoxon rank sum test was performed to compare PCSK9 null compound heterozygous 

carriers to heterozygous carriers using the R software (version 3.1). Coronary artery 

calcification (CAC) percentiles were calculated with the MESA CAC Score Reference 

Values web tool (http://www.mesa-nhlbi.org/Calcium/input.aspx)25.

Power

We performed power calculations using the Genetic Power calculator (http://

pngu.mgh.harvard.edu/~purcell/gpc/) with the “QTL association for sib-ships and 

singletons” option.

Results

After quality control, 3,223 individuals from the Jackson Heart Study were available for 

analysis (Table 1, Supplemental Table 1). We observed 17,263 null variants with MAF < 5% 

and 49,929 missense variants predicted to be damaging in at least 5 of 7 in silico prediction 

algorithms with MAF < 5% (Supplemental Table 2). Of the 18,465 genes sequenced, 14,058 

have a null or damaging missense variant with MAF < 5%. On average, we observe 5 null or 

damaging missense variants per gene and an average of 7 null or damaging missense alleles 

per gene. Each individual carries, on average, a total of 153 null or damaging missense 

variants with MAF < 5%.

We found three gene-based associations that met our pre-specified significance threshold of 

1.1 × 10−7 (Table 2, Supplemental Table 3, Supplemental Table 4). The most significant 

association was between LDL-C and PCSK9. Participants who carried null or damaging 

missense mutations in PCSK9 had 36 mg/dl lower LDL-C compared with non-carriers (p-

value=2.9 × 10−21). Of note, we identified three individuals with complete PCSK9 
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deficiency (each compound heterozygote for PCSK9 p.Y142X and p.C679X) (Table 3). 

These individuals had a lower median LDL-C (64.2 mg/dl) compared to individuals that 

carry only one null mutation (85.7 mg/dl; n=77) (p-value=0.044; Supplemental Figure 3). 

The three PCSK9 null compound heterozygotes did not differ from heterozygotes in any 

other cardiometabolic trait tested except QT interval (Supplemental Table 5). Compound 

heterozygotes had a lower QT interval (mean=369, range=362–380) compared to individuals 

that carried only one null PCSK9 variant (mean=413) (p-value=0.006 using a Wilcoxon rank 

sum test). Individuals carrying one null PCSK9 variant had similar QT intervals compared 

with non-carriers (mean=413), suggesting a recessive effect. Two individuals carrying both 

PCSK9 p.Y142X and p.679X had a coronary artery calcification (CAC) greater than the 

80th-percentile for their age and sex. A 52-year-old man had a CAC of 24.9, which is in the 

83rd-percentile for age and sex, despite an LDL-C of 32 mg/dl (Table 3).

The second most significant gene association was between mean corpuscular hemoglobin 

(MCH) and hemoglobin subunit theta 1 (HBQ1). Individuals carrying a damaging missense 

variant (p.G52A)26 in HBQ1 had lower MCH compared with non-carriers (p-value=8.4 × 

10−13). One additional association passed our significance threshold. Rare damaging 

missense variants in Vacuolar Protein Sorting-Associated Protein 13A (VPS13A) were 

associated with an increase in red blood cell distribution width (p-value=7.1 × 10−8). Of the 

nine variants that contributed to the association between VPS13A and red blood cell 

distribution width, six were singletons, one a doubleton, one with four carriers (p.S2673L) 

and one with 22 minor allele carriers (p.K2672N) (Supplemental Table 4). VPS13A showed 

evidence for association with other hematologic phenotypes, including lower hemoglobin 

levels (p-value=7.0 × 10−04; Supplemental Table 6).

Li et al27 recently reported ten gene-based associations aggregating null variants with a p-

value < 4.4 × 10−6. Individuals of African Ancestry contributed to seven of these 

associations. We attempted to replicate these seven associations in our data (Supplemental 

Table 7). We replicated the association of total cholesterol with PCSK9 (beta = -39 mg/dl; p-

value = 6.6 × 10−12), and of triglycerides with apolipoprotein C-III (APOC3; p-value = 1.0 × 

10−5)2, 28–30. We found suggestive evidence for the association of fasting glucose with 

thioredoxin domain containing 5 (TXNDC5), consistent with the report by Li et al; carriers 

of null alleles in TXNDC5 had higher fasting glucose compared with non-carriers (p=0.07).

For 3,223 individuals and a significance level of 1.1 × 10−7, we had 99% statistical power to 

detect a 1-standard deviation unit effect with a 1% cumulative minor allele frequency, and 

64% statistical power to detect a 1-standard deviation unit effect with a 0.5% cumulative 

minor allele frequency. Analysis of Mendelian lipid genes as a ‘positive control’ shows 

several genes where a burden of null/damaging mutations alters the expected plasma lipid 

fraction in the appropriate direction (e.g., LDLR and higher LDL-C [P=4.7 × 10−5], CETP 
and higher HDL-C [P=0.0001]) (Supplemental Table 8). However, even an analysis of 

positive controls is limited by the number of carriers, with the majority of the Mendelian 

lipid genes having < 10 observed null alleles.
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Discussion

We set out to discover null or damaging missense variants that lead to a large effect on any 

of a range of cardiovascular traits. In a study of 3,223 African Americans, we found three 

associations that met our pre-specific significance threshold.

We report one new observation, that of VPS13A associated with an increase in red blood cell 

distribution width (RDW). RDW is a measure of the range of variation in red blood cells and 

higher values can indicate certain disorders such as anemia. Mutations in VPS13A have 

been reported to cause chorea-acanthocytosis, an autosomal recessive neurodegenerative 

disorder that causes red blood cells to appear spiky31. Ten VPS13A variants are reported in 

ClinVar with chorea-acanthocytosis listed as the condition. We did not find any of the 

reported ClinVar variants in our data nor any carriers of rare damaging recessive variants in 

VPS13A. Here, in a sample of individuals unselected for disease state, we report a milder 

phenotype resulting from heterozygous mutations in VPS13A. Similar to VPS13A, 

Mendelian lipid genes having a large effect on plasma lipid levels have been shown to harbor 

common variants with smaller effects on phenotype32–34.

We found three individuals who are compound heterozygous for null mutations in PCSK9. 

Previously, only two individuals with PCSK9 deficiency have been reported35, 36. Both of 

the previously reported individuals were young (21 and 31 years old) and had very low 

circulating LDL-C (14–16 mg/dl). The three individuals we have identified here are older 

(50–52 years old) and have higher circulating LDL-C (32–72 mg/dl). One of the three 

individuals had a CAC score in the 83rd-percentile despite a LDL-C of 32 mg/dl. CAC 

values over the 75th-percentile are considered abnormal.

Some limitations deserve mention. The association between VPS13A and RDW needs to be 

confirmed in an independent study. Furthermore, sequencing will be required for replication; 

none of the variants driving the novel gene-based association were available on the widely-

used exome genotyping array. The few results passing our pre-specified significance level 

could be explained by statistical power given our sample size and the limited number of 

observed null alleles per gene. We also note that we have used a stringent significance 

threshold given the multiple testing burden inherent in our study design.

In conclusion, a limited number of null/damaging alleles with a large effect on 

cardiovascular traits were detectable from the exome sequences of 3,000 African American 

individuals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Clinical Perspective

The correlation of null alleles with human phenotypes can provide insight into gene 

function in humans. Here, we performed whole exome sequencing in 3,223 African 

American individuals living in Jackson, Mississippi in order to identify null and 

damaging missense variants and test these variants for association with 36 cardiovascular 

traits. We replicated the association of null and damaging missense variants in PCSK9 
with LDL cholesterol and found three individuals in their 50s each compound 

heterozygous for PCSK9. Of note, one of these three individuals had a coronary artery 

calcification score in the 83rd-percentile despite a LDL-C of 32 mg/dl. We also found 

individuals with rare damaging missense variants in VPS13A had higher red blood cell 

distribution width compared with non-carriers. Mutations in VPS13A have been 

previously reported to cause chorea-acanthocytosis, an autosomal recessive 

neurodegenerative disorder that causes red blood cells to appear spiky. Only a limited 

number of null/damaging alleles with a large effect on cardiovascular traits were 

detectable in ~3,000 African American individuals.
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Figure 1. 
Cardiovascular traits tested for association with null and damaging missense variants. 36 

cardiovascular traits were tested for association with null and damaging missense variants in 

3,223 African American individuals from the Jackson Heart Study.
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Table 1

Descriptive statistics of Jackson Heart Study participants with exome sequences. Statistic provided as mean

±standard deviation for continuous variables and n (percent) for categorical variables.

Trait N Statistic

Demographic

Female 3223 1211 (37.6%)

Age (years) 3223 55.59±12.82

Current Smoking status 3195 428 (13.4%)

Anthropometrics

Body Mass Index [BMI] (kg/m2) 3216 31.99±7.37

Weight (kg) 3218 91.37±21.71

Height (cm) 3218 169.06±9.25

Waist Circumference (cm) 3216 101.36±16.26

Neck Circumference (cm) 3219 38.72±3.76

Hypertension

Hypertension, Yes [HTN] 3223 2012 (62.4%)

Systolic Blood Pressure [SBP] (mmHg)* 3217 132.11±19.87

Diastolic Blood Pressure [DBP] (mmHg)* 3217 81.50±10.80

Anti-hypertensive treatment 2619 1655 (63.2%)

Lipids

LDL-C† (mg/dl) 2950 131.8±39.29

HDL-C (mg/dl) 2980 51.58±14.76

Triglycerides (mg/dl) 2979 107.61±82.77

Total Cholesterol† (mg/dl) 2395 206.08±43.44

Lipid-Lowering Treatment 2619 367 (14%)

Coronary Heart Disease

Coronary Heart Disease Status [CHD] 3223 251 (7.8%)

Coronary Artery Calcium Score [CAC] (Agatston units) 1795 176.93±550.8

CAC>0 1795 882 (49.1%)

CAC>100 1795 439 (24.5%)

Diabetes

Diabetic Status 3220 745 (23.1%)

Fasting Insulin (Plasma IU/mL)‡ 2388 15.88±9.22

HOMA-B‡ (mmol/l) 2357 215.75±107.75

HOMA-IR‡ (mmol/l) 2386 3.59±2.29
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Trait N Statistic

Fasting Plasma Glucose Level (mg/dL)‡ 2390 90.53±8.97

Hemoglobin HbA1c (%)‡ 2429 5.51±0.47

Biomarkers

Leptin (Serum ng/mL) 3198 28.39±23.98

High Sensitivity C-Reactive Protein [hsCRP] (Serum mg/dL) 3214 0.53±1

Endothelin-1 (Serum pg/mL) 3214 1.34±0.6

Aldosterone (Serum ng/dL) 3213 5.81±4.92

Renin Activity RIA (Plasma ng/mL/hr) 1509 1.72±6.45

Cortisol Levels (Serum ug/dL) 3213 9.87±4.13

Adiponectin (Plasma ng/mL) 3166 5345.18±4236.78

Electrocardiogram

QT Interval (msec) 3008 413.34±30.74

QRS Interval (msec) 2802 92.08±9.95

Blood

Hematocrit level (%) 3110 39.27±4.2

Hemoglobin (g/dl) 3109 13.04±1.48

Mean corpuscular hemoglobin [MCH] (pg) 2781 28.88±2.51

Mean corpuscular hemoglobin concentration [MCHC] (%) 2781 33.16±0.91

Mean corpuscular volume [MCV] (fL) 2781 86.97±6.41

Red blood cell distribution width [RDW] (%) 2780 13.70±1.38

Red cell count (m/cmm) 2781 4.53±0.51

*
Values were adjusted for individuals on blood pressure lowering medication.

†
Values were adjusted for individuals on lipid lowering medication.

‡
Values for non-diabetic individuals
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Table 3

Phenotypes of compound heterozygotes for PCSK9 null mutations.

Trait Individual 1 Individual 2 Individual 3

Demographic

Sex Female Female Male

Age (years) 50 50 52

Current Smoker Yes No Yes

Anthropometrics

Body Mass Index [BMI] (kg/m2) 23.7 36.7 28.3

Weight (kg) 60.6 95.2 84.6

Height (cm) 160 161 173

Waist Circumference (cm) 82 118 96

Neck Circumference (cm) 34 36 40

Hypertension

Hypertension, Yes [HTN] No Yes Yes

Systolic Blood Pressure [SBP] (mmHg)* 96 140 166

Diastolic Blood Pressure [DBP] (mmHg)* 64 84 105

Anti-hypertensive treatment No Yes No

Lipids

LDL-C (mg/dl) 71.6 64.2 32

HDL-C (mg/dl) 63 98 41

Triglycerides (mg/dl) 97 34 142

Total Cholesterol (mg/dl) 154 169 101

Lipid-lowering Treatment No No Not reported

Coronary Heart Disease

Coronary Heart Disease Status [CHD] No No No

Coronary Artery Calcium Score [CAC] 2.7 0 24.9

CAC percentile 87th 0th 83rd

Diabetes

Diabetic Status Yes No No

Fasting Insulin (Plasma IU/mL) 17 12 13

HOMA-B (mmol/l) 194.4 200.6 139.9

HOMA-IR (mmol/l) 4.0 2.5 3.1

Fasting Plasma Glucose Level (mg/dL) 95 85 97

Hemoglobin HbA1c (%) 6.3 5.4 5.4

Biomarkers
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Trait Individual 1 Individual 2 Individual 3

Leptin (Serum ng/mL) 13.8 55.3 12.9

High Sensitivity C-Reactive Protein [hsCRP] (Serum mg/dL) 0.1 6.4 0.2

Endothelin-1 (Serum pg/mL) 1.4 1.5 3

Aldosterone (Serum ng/dL) 4.6 1.9 5.6

Renin Activity RIA (Plasma ng/mL/hr) 1.3 1.4 0.3

Cortisol Levels (Serum ug/dL) 6.2 12.2 8.8

Adiponectin (Plasma ng/mL) 2585.5 4847.6 3184.3

Electrocardiogram

QT Interval (msec) 366 362 380

QRS Interval (msec) 84 102 114

Blood

Hematocrit level (%) 41.1 38.7 47.8

Hemoglobin (g/dl) 13.8 13.2 15.3

Mean corpuscular hemoglobin [MCH] (pg) 30.6 30.3 27

Mean corpuscular hemoglobin concentration [MCHC] (%) 33.7 34.2 32

Mean corpuscular volume [MCV] (fL) 90.8 88.5 84.4

Red blood cell distribution width [RDW] (%) 13.2 14.3 13.4

Red cell count (m/cmm) 4.5 4.4 5.7

*
Values were adjusted for individuals on blood pressure lowering medication.
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