712 research outputs found

    A clinical test for visual crowding

    Get PDF
    Crowding is a major limitation of visual perception. Because of crowding, a simple object, like a letter, can only be recognized if clutter is a certain critical spacing away. Crowding is only weakly associated with acuity. The critical spacing of crowding is lowest in the normal fovea, and grows with increasing eccentricity in peripheral vision. Foveal crowding is more prominent in certain patient groups, including those with strabismic amblyopia and apperceptive agnosia. Crowding may lessen with age during childhood as reading speed increases. The range of crowding predicts much of the slowness of reading in children with developmental dyslexia. There is tantalizing evidence suggesting that the critical spacing of crowding indicates neural density (participating neurons per square deg) in the visual cortex. Thus, for basic and applied reasons, it would be very interesting to measure foveal crowding clinically in children and adults with normal and impaired vision, and to track the development of crowding during childhood. While many labs routinely measure peripheral crowding as part of their basic research in visual perception, current tests are not well suited to routine clinical testing because they take too much time, require good fixation, and are mostly not applicable to foveal vision. Here we report a new test for clinical measurement of crowding in the fovea. It is quick and accurate, works well with children and adults, and we expect it to work well with dementia patients as well. The task is to identify a numerical digit, 1-9, using a new “Pelli” font that is identifiable at tiny width (0.02 deg, about 1 minarc, in normal adult fovea). This allows quick measurement of the very small (0.05 deg) critical spacing in the normal adult fovea, as well as with other groups that have higher critical spacing. Preliminary results from healthy adults and children are presented

    Grouping in object recognition: The role of a Gestalt law in letter identification

    Get PDF
    The Gestalt psychologists reported a set of laws describing how vision groups elements to recognize objects. The Gestalt laws “prescribe for us what we are to recognize ‘as one thing’” (Köhler, 1920). Were they right? Does object recognition involve grouping? Tests of the laws of grouping have been favourable, but mostly assessed only detection, not identification, of the compound object. The grouping of elements seen in the detection experiments with lattices and “snakes in the grass” is compelling, but falls far short of the vivid everyday experience of recognizing a familiar, meaningful, named thing, which mediates the ordinary identification of an object. Thus, after nearly a century, there is hardly any evidence that grouping plays a role in ordinary object recognition. To assess grouping in object recognition, we made letters out of grating patches and measured threshold contrast for identifying these letters in visual noise as a function of perturbation of grating orientation, phase, and offset. We define a new measure, “wiggle”, to characterize the degree to which these various perturbations violate the Gestalt law of good continuation. We find that efficiency for letter identification is inversely proportional to wiggle and is wholly determined by wiggle, independent of how the wiggle was produced. Thus the effects of three different kinds of shape perturbation on letter identifiability are predicted by a single measure of goodness of continuation. This shows that letter identification obeys the Gestalt law of good continuation and may be the first confirmation of the original Gestalt claim that object recognition involves grouping

    Error-Free 10.7 Gb/s Digital Transmission over 2 km Optical Link Using an Ultra-Low-Voltage Electro-Optic Modulator

    Get PDF
    We demonstrate the feasibility of 10.7 Gb/s error-free (BER < 10-12) optical transmission on distances up to 2 km using a recently developed ultra-low-voltage commercial Electro-Optic Modulator (EOM) that is driven by 0.6 Vpp and with an optical input power of 1 mW. Given this low voltage operation, the modulator could be driven directly from the detectors’ board signals without the need of any further amplification reducing significantly the power dissipation and the material budget

    MLP: a MATLAB toolbox for rapid and reliable auditory threshold estimation

    Get PDF
    In this paper, we present MLP, a MATLAB toolbox enabling auditory thresholds estimation via the adaptive Maximum Likelihood procedure proposed by David Green (1990, 1993). This adaptive procedure is particularly appealing for those psychologists that need to estimate thresholds with a good degree of accuracy and in a short time. Together with a description of the toolbox, the current text provides an introduction to the threshold estimation theory and a theoretical explanation of the maximum likelihood adaptive procedure. MLP comes with a graphical interface and it is provided with several built-in, classic psychoacoustics experiments ready to use at a mouse click

    Telephone conversation impairs sustained visual attention via a central bottleneck

    Get PDF
    Recent research has shown that holding telephone conversations disrupts one's driving ability. We asked whether this effect could be attributed to a visual attention impairment. In Experiment 1, participants conversed on a telephone or listened to a narrative while engaged in multiple object tracking (MOT), a task requiring sustained visual attention. We found that MOT was disrupted in the telephone conversation condition, relative to single-task MOT performance, but that listening to a narrative had no effect. In Experiment 2, we asked which component of conversation might be interfering with MOT performance. We replicated the conversation and single-task conditions of Experiment 1 and added two conditions in which participants heard a sequence of words over a telephone. In the shadowing condition, participants simply repeated each word in the sequence. In the generation condition, participants were asked to generate a new word based on each word in the sequence. Word generation interfered with MOT performance, but shadowing did not. The data indicate that telephone conversation disrupts attention at a central stage, the act of generating verbal stimuli, rather than at a peripheral stage, such as listening or speaking

    Injecting Electrons into CeO2 via Photoexcitation of Embedded Au Nanoparticles

    Get PDF
    The electron injection efficiency and the steady state absorptance at different photon energies for a composite system made of Au NPs embedded in a cerium oxide matrix are reported. Cerium oxide can be coupled with plasmonic nanoparticles (NPs) to improve its catalytic properties by visible-light absorption. The present work is a study of the ultrafast dynamics of excited states induced by ultraviolet and visible-light excitation in Au NPs combined with cerium oxide, aimed at understanding the excitation pathways. The data, obtained by femtosecond transient absorption spectroscopy, show that the excitation of localized surface plasmon resonances (LSPRs) in the Au NPs leads to an ultrafast injection of electrons into the empty 4f states of the surrounding cerium oxide. Within the first few picoseconds, the injected electrons couple with the lattice distortion forming a polaronic excited state, with similar properties to that formed after direct band gap excitation of the oxide. At sub-picosecond delay times, we observed relevant differences in the energetics and the time dynamics as compared to the case of band gap excitation of the oxide. Using different pump energies across the LSPR-related absorption band, the efficiency of the electron injection from the NPs into the oxide was found to be rather high, with a maximum above 30%. The injection efficiency has a different trend in energy as compared to the LSPR-related static optical absorptance, showing a significant decrease in low energies. This behavior is explained considering different deexcitation pathways with variable weight across the LSPR band. The results are important for the design of materials with high overall solar catalytic efficiency

    Visual onset expands subjective time

    Get PDF
    We report a distortion of subjective time perception in which the duration of a first interval is perceived to be longer than the succeeding interval of the same duration. The amount of time expansion depends on the onset type defining the first interval. When a stimulus appears abruptly, its duration is perceived to be longer than when it appears following a stationary array. The difference in the processing time for the stimulus onset and motion onset, measured as reaction times, agrees with the difference in time expansion. Our results suggest that initial transient responses for a visual onset serve as a temporal marker for time estimation, and a systematic change in the processing time for onsets affects perceived time

    Parts, Wholes, and Context in Reading: A Triple Dissociation

    Get PDF
    Research in object recognition has tried to distinguish holistic recognition from recognition by parts. One can also guess an object from its context. Words are objects, and how we recognize them is the core question of reading research. Do fast readers rely most on letter-by-letter decoding (i.e., recognition by parts), whole word shape, or sentence context? We manipulated the text to selectively knock out each source of information while sparing the others. Surprisingly, the effects of the knockouts on reading rate reveal a triple dissociation. Each reading process always contributes the same number of words per minute, regardless of whether the other processes are operating

    Sol–gel-derived glass-ceramic photorefractive films for photonic structures

    Get PDF
    Glass photonics are widespread, from everyday objects around us to high-tech specialized devices. Among different technologies, sol–gel synthesis allows for nanoscale materials engineering by exploiting its unique structures, such as transparent glass-ceramics, to tailor optical and electromagnetic properties and to boost photon-management yield. Here, we briefly discuss the state of the technology and show that the choice of the sol–gel as a synthesis method brings the advantage of process versatility regarding materials composition and ease of implementation. In this context, we present tin-dioxide–silica (SnO2–SiO2) glass-ceramic waveguides activated by europium ions (Eu3+). The focus is on the photorefractive properties of this system because its photoluminescence properties have already been discussed in the papers presented in the bibliography. The main findings include the high photosensitivity of sol–gel 25SnO2:75SiO2 glass-ceramic waveguides; the ultraviolet (UV)-induced refractive index change (∆n ~ −1.6 × 10−3), the easy fabrication process, and the low propagation losses (0.5 ± 0.2 dB/cm), that make this glass-ceramic an interesting photonic material for smart optical applications
    • 

    corecore