37 research outputs found

    Lessons From 20 Years of Studies of Wheat Genotypes in Multiple Environments and Under Contrasting Production Systems

    Get PDF
    Identifying opportunities and limitations for closing yield gaps is essential for setting right the efforts dedicated to improve germplasm and agronomic practices. This study analyses genotypes × environments interaction (G × E), genetic progress, and grain yield stability under contrasting production systems. For this, we analyzed datasets obtained from three Swiss trial-networks of winter wheat that were designed to evaluate genotypes under organic farming conditions, conventional management with low-inputs (150 kg nitrogen (N) ha−1 with no fungicide application) and conventional management with high-inputs (170 kg N ha−1 with fungicide application). The datasets covered the periods from 1998 to 2018 for organic and conventional management with low-inputs and from 2008 to 2018 for conventional management with high-inputs. The trial-networks evaluated each year an average of 36 winter wheat genotypes that included released varieties, advanced breeding lines, and lines for registration and post-registration in Switzerland. We investigated within each trial-network the influence of years, genotypes, environments and their interactions on the total variance in grain yield and grain N concentration using variance components analyses. We further applied mixed models with regression features to dissect genetic components due to breeding efforts from non-genetic components. The genotype as a single factor or as a factor interacting with the environment or the year (G × E, G × year, and G × E × year) explained 13% (organic), 20% (conventional low-inputs), and 24% (conventional high-inputs) of the variance in grain yield, while the corresponding values for grain N concentration were 29%, 25%, and 32%. Grain yield has stagnated since 1990 for conventional systems while the trend under organic management was slightly negative. The dissection of a genetic component from the grain yield trends under conventional management showed that genetic improvements contributed with 0.58 and 0.68 t ha−1 y−1 with low- and high- inputs, respectively. In contrast, a significant genetic source in the grain yield trend under organic management was not detected. Therefore, breeding efforts have been less effective on the wheat productivity for organic farming conditions than for conventional ones

    The antimalarial MMV688533 provides potential for single-dose cures with a high barrier to

    Get PDF
    The emergence and spread of Plasmodium falciparum resistance to first-line antimalarials creates an imperative to identify and develop potent preclinical candidates with distinct modes of action. Here, we report the identification of MMV688533, an acylguanidine that was developed following a whole-cell screen with compounds known to hit high-value targets in human cells. MMV688533 displays fast parasite clearance in vitro and is not cross-resistant with known antimalarials. In a P. falciparum NSG mouse model, MMV688533 displays a long-lasting pharmacokinetic profile and excellent safety. Selection studies reveal a low propensity for resistance, with modest loss of potency mediated by point mutations in PfACG1 and PfEHD. These proteins are implicated in intracellular trafficking, lipid utilization, and endocytosis, suggesting interference with these pathways as a potential mode of action. This preclinical candidate may offer the potential for a single low-dose cure for malaria

    The antimalarial MMV688533 provides potential for single-dose cures with a high barrier to

    Get PDF
    The emergence and spread of Plasmodium falciparum resistance to first-line antimalarials creates an imperative to identify and develop potent preclinical candidates with distinct modes of action. Here, we report the identification of MMV688533, an acylguanidine that was developed following a whole-cell screen with compounds known to hit high-value targets in human cells. MMV688533 displays fast parasite clearance in vitro and is not cross-resistant with known antimalarials. In a P. falciparum NSG mouse model, MMV688533 displays a long-lasting pharmacokinetic profile and excellent safety. Selection studies reveal a low propensity for resistance, with modest loss of potency mediated by point mutations in PfACG1 and PfEHD. These proteins are implicated in intracellular trafficking, lipid utilization, and endocytosis, suggesting interference with these pathways as a potential mode of action. This preclinical candidate may offer the potential for a single low-dose cure for malaria

    Little Potential of Spring Wheat Genotypes as a Strategy to Reduce Nitrogen Leaching in Central Europe

    No full text
    Nitrogen (N) losses negatively impact groundwater quality. Spring wheat genotypes varying in N-fertilizer recovery were studied (by using lysimeters) for their potential to minimize NO3-N leaching during spring and summer, over a three-year period. Additionally, we examined to what extent root growth and NO3-N leaching explain the well-known difference found between apparent and isotopic N recovery. The genotypes were grown under low (2 g m−2) and high (27 g m−2) N fertilizer supply. On average, the apparent and isotopic recoveries of N fertilizer by wheat were 43% and 51%, respectively. The three genotypes varied in fertilizer N recovery but not in NO3-N leaching, which only accounted for 15% of the applied N fertilizer. The differences in N uptake, fertilizer N recovery and root growth among the genotypes were not associated with the leached NO3-N because root growth and N uptake were not well synchronized with NO3-N leaching. Already at stem elongation 70% to 98% of the season-long NO3-N leaching had already taken place. Thus, the ability to minimize in-season NO3-N leaching by using spring wheat genotypes with higher fertilizer N recovery was limited because maximum N leaching occurred in the early crop season

    Little potential of spring wheat genotypes as a strategy to reduce nitrogen leaching in Central Europe

    Get PDF
    Nitrogen (N) losses negatively impact groundwater quality. Spring wheat genotypes varying in N-fertilizer recovery were studied (by using lysimeters) for their potential to minimize NO3-N leaching during spring and summer, over a three-year period. Additionally, we examined to what extent root growth and NO3-N leaching explain the well-known difference found between apparent and isotopic N recovery. The genotypes were grown under low (2 g m−2) and high (27 g m−2) N fertilizer supply. On average, the apparent and isotopic recoveries of N fertilizer by wheat were 43% and 51%, respectively. The three genotypes varied in fertilizer N recovery but not in NO3-N leaching, which only accounted for 15% of the applied N fertilizer. The differences in N uptake, fertilizer N recovery and root growth among the genotypes were not associated with the leached NO3-N because root growth and N uptake were not well synchronized with NO3-N leaching. Already at stem elongation 70% to 98% of the season-long NO3-N leaching had already taken place. Thus, the ability to minimize in-season NO3-N leaching by using spring wheat genotypes with higher fertilizer N recovery was limited because maximum N leaching occurred in the early crop season.ISSN:2073-439

    Viscosity of triticale varieties differs in its response to temperature after flowering

    No full text
    Triticale produced to feed monogastric livestock needs to have a low potential applied viscosity (PAV). Five varieties were cultivated at nine locations (430-700 m a.s.l.) in Switzerland over three years. Six of the locations were sampled for at least two consecutive years, and PAV was related to meteorological data. The data was subjected to correlation and regression analysis, as well as a multiplicative model, to evaluate interactions. Extent and stability of PAV differed between experimental locations across all genotypes, notably between varieties and years, but also between single locations in the same year. Interactions between genotype and environment were responsible for up to 12% of the PAV variance. With the exception of one variety, PAV was negatively correlated with the cumulated mean temperatures over a 20-day period, starting on day 24 after heading. In these cases, temperature data explained the differences in PAV much better than precipitation did. By linear regression, PAV could be predicted from mean temperature during grain development and grain hardness at harvest for the four thermosensitive varieties. Two varieties were of particular interest, as they had either a favorably low PAV (Tridel) or a PAV resistant to environmental influences (Prader). A combination of these two traits could be used to create a type of triticale particularly suitable for livestock feeding

    How to reconstruct an upper full-thickness abdomen wall defect in austere environment? Interests of the pedicled myofascial latissimis dorsi flap

    No full text
    Upper abdominal wall defects secondary to trauma are not amenable to immediate closure in most cases. After a primary coverage, the definitive reconstruction can be done at a later date, using prosthetic mesh or flap. The majority of these complex procedures is, however, not available in the austere environment. The authors report a clinical case of upper full-thickness defects of the abdominal wall secondary to an explosion in Afghanistan. The patient was managed by a French Forward Surgical Team. The defect was immediately reconstructed in a one-stage surgery using a pedicled myofascial latissimus dorsi flap with good functional results. The pedicled latissimus dorsi flap is commonly used for coverage of both extrathoracic and intrathoracic defects. It is, therefore, possible to extend the harvesting of the muscle to the thoracolumbar fascia and the posterior third of the iliac crest. It provides a very large flap to cover an upper full-thickness abdomen wall defect. The harvest technique is simple, short, and largely accessible to a general surgeon. It provides immediate and definitive closure with a short hospital stay, what is clearly adapted in austere environment

    Nitrogen Rate Increase Not Required for No-Till Wheat in Cool and Humid Conditions

    No full text
    An increased nitrogen (N) supply was proposed to avoid grain yield (GY) reductions and successfully implement conservation agriculture (CA). We investigated interactions effects of tillage system and N supply on winter wheat (Triticum aestivum L.) at two sites in the Swiss midlands with no (0 kg N ha−1) and high (150–160 kg N ha−1) N supply using 15N-labelled ammonium nitrate in selected treatments. Wheat’s GY, yield components, N related traits and soil mineral N content (Nmin) under conventional tillage (CT), minimum tillage (MT), and no-tillage (NT) were studied following two preceding crops: oilseed rape (Brassica napus L.) and maize (Zea mays L.). Wheat after oilseed rape had significantly higher GY and biomass than after maize while a yield decrease under NT compared with CT and MT was observed regardless of N supply level. Differences in soil Nmin among tillage systems were seldom found and were inconsistent. No differences in 15N fertilizer recovery were found between NT and CT while residual Nmin after harvest was lower under NT than CT or MT. In conclusion, we did not found consistent reductions in soil N availability and N uptake under NT that would justify an increased N supply for wheat under CA.ISSN:2073-439
    corecore