169 research outputs found
Zinc Complexes with Nitrogen Donor Ligands as Anticancer Agents
The search for anticancer metal-based drugs alternative to platinum derivatives could not exclude zinc derivatives due to the importance of this metal for the correct functioning of the human body. Zinc, the second most abundant trace element in the human body, is one of the most important micro-elements essential for human physiology. Its ubiquity in thousands of proteins and enzymes is related to its chemical features, in particular its lack of redox activity and its ability to support different coordination geometries and to promote fast ligands exchange. Analogously to other trace elements, the impairment of its homeostasis can lead to various diseases and in some cases can be also related to cancer development. However, in addition to its physiological role, zinc can have beneficial therapeutic and preventive effects on infectious diseases and, compared to other metal-based drugs, Zn(II) complexes generally exert lower toxicity and offer few side effects. Zinc derivatives have been proposed as antitumor agents and, among the great number of zinc coordination complexes which have been described so far, this review focuses on the design, synthesis and biological studies of zinc complexes comprising N-donor ligands and that have been reported within the last five years
Novel small molecule EGFR inhibitors as candidate drugs in non-small cell lung cancer.
In the last decade, better understanding of the role of epidermal growth factor receptor in the pathogenesis and progression of non-small cell lung cancer has led to a revolution in the work-up of these neoplasms. Tyrosine kinase inhibitors, such as erlotinib and gefitinib, have been approved for the treatment of non-small cell lung cancer, demonstrating an improvement in progression-free and overall survival, particularly in patients harboring activating EGFR mutations. Nevertheless, despite initial responses and long-lasting remissions, resistance to tyrosine kinase inhibitors invariably develops, most commonly due to the emergence of secondary T790M mutations or to the amplification of mesenchymal-epithelial transition factor (c-Met), which inevitably leads to treatment failure. Several clinical studies are ongoing (http://www.clinicaltrials.gov), aimed to evaluate the efficacy and toxicity of combined approaches and to develop novel irreversible or multitargeted tyrosine kinase inhibitors and mutant-selective inhibitors to overcome such resistance. This review is an overview of ongoing Phase I, II, and III trials of novel small molecule epidermal growth factor receptor inhibitors and combinations in non-small cell lung cancer patients
In vitro anticancer activity and neurotoxicity of novel heavy metal-based anticancer complexes.
Cisplatin is one of the most effective metal-based anticancer agents, targeting a large number of solid tumours. Despite its efficacy, cisplatin treatment is still limited by severe side effects such as neuro-, hepato- and nephro-toxicity and by resistance phenomena, only partially overcome by the use of new platinum drugs (i.e. oxaliplatin and carboplatin). These problems have stimulated the research and development of alternative therapeutic strategies based on different heavy metals. In this work we investigated the in vitro activity and neurotoxicity of three anticancer complexes: [Cu(PTA)4]PF6, [Cu(thp)4]PF6 and [Au(PTA)4]PF6. Neurotoxicity was evaluated by embryonic rat dorsal root ganglia (DRG) organotypic culture model. Furthermore the extent of proteasome inhibition in rat embryonic DRG neurons was evaluated by fluorimetric assay. After 48 hours of treatment, both copper-based compounds were not neurotoxic even at higher concentrations with respect to the IC50 obtained in A549 and IGROV-1 human cancer cells while [Au(PTA)4]PF6 was neurotoxic at lower concentration than IC50 in cancer cell lines tested. Since the ubiquitin-proteasome system has been identified as molecular target in cancer cells for the heavy metal based-drug, we evaluated their ability to affect the proteasome machinery in DRG neurons. The copper-based compounds, that are not neurotoxic, do not inhibit proteasome activity in DRG neurons. On the contrary, the neurotoxic complex [Au(PTA)4] PF6, induces a significant inhibition of proteasome activity even at concentration lower than the IC50. Furthermore, based on the content in heavy metal-based atoms, the complexes used in this study are suitable candidates for Photon Activation Therapy (PAT). Pretreatment of IGROV-1 cells with [Cu(PTA)4]PF6 induces an increase cell death with respect to drug or synchrotron (SR) alone. Furthermore the SR/[Cu(PTA)4]PF6 combinational treatment induced an increase in DNA damage with respect to single treatments. Our results, together with the low IC50 of the copper compounds compared to the one observed for cisplatin, suggest them as promising compounds in anticancer treatment
Temperature-dependent polymorphism of N-(4-fluorophenyl)-1,5-dimethyl-1H-imidazole-4-carboxamide 3-oxide: experimental and theoretical studies on intermolecular interactions in the crystal state
X-ray analysis of N-(4-fluorophenyl)-1,5-dimethyl-1H-imidazole-4-carboxamide 3-oxide reveals the temperature-dependent polymorphism associated with the crystallographic symmetry conversion. The observed crystal structure transformation corresponds to a symmetry reduction from I41 /a (I) to P43 (II) space groups. The phase transition mainly concerns the subtle but clearly noticeable reorganization of molecules in the crystal space, with the structure of individual molecules left almost unchanged. The Hirshfeld surface analysis shows that various intermolecular contacts play an important role in the crystal packing, revealing graphically the differences in spatial arrangements of the molecules in both polymorphs. The N-oxide oxygen atom acts as a formally negatively charged hydrogen bonding acceptor in intramolecular hydrogen bond of N–H…O− type. The combined crystallographic and theoretical DFT methods demonstrate that the observed intramolecular N-oxide N–H…O hydrogen bond should be classified as a very strong charge-assisted and closed-shell non-covalent interaction
Evaluation panel “Chimie moléculaire for ”French National Research Agency (ANR) 2022
ANR is the project-based funding agency for research in France
Editorial Board: PeerJ Inorganic Chemistry
https://peerj.com/MPellei
- …