4,867 research outputs found

    Electrostatic tailoring of magnetic interference in quantum point contact ballistic Josephson junctions

    Full text link
    The magneto-electrostatic tailoring of the supercurrent in quantum point contact ballistic Josephson junctions is demonstrated. An etched InAs-based heterostructure is laterally contacted to superconducting niobium leads and the existence of two etched side gates permits, in combination with the application of a perpendicular magnetic field, to modify continuously the magnetic interference pattern by depleting the weak link. For wider junctions the supercurrent presents a Fraunhofer-like interference pattern with periodicity h/2e whereas by shrinking electrostatically the weak link, the periodicity evolves continuously to a monotonic decay. These devices represent novel tunable structures that might lead to the study of the elusive Majorana fermions.Comment: 4.5 pages, 4 color figure

    Singlet-triplet transition in a few-electron lateral InGaAs-InAlAs quantum dot

    Full text link
    The magnetic-field evolution of Coulomb blockade peaks in lateral InGaAs/InAlAs quantum dots in the few-electron regime is reported. Quantum dots are defined by gates evaporated onto a 60 nm-thick hydrogen silsesquioxane insulating film. A gyromagnetic factor of 4.4 is measured via zero-bias spin spectroscopy and a transition from singlet to triplet spin configuration is found at an in-plane magnetic field B = 0.7 T. This observation opens the way to the manipulation of singlet and triplet states at moderate fields and its relevance for quantum information applications will be discussed.Comment: 4 pages, 3 figure

    Diffuse Gas and LMXBs in the Chandra Observation of the S0 Galaxy NGC 1553

    Full text link
    We have spatially and spectrally resolved the sources of X-ray emission from the X-ray faint S0 galaxy NGC 1553 using an observation from the Chandra X-ray Observatory. The majority (70%) of the emission in the 0.3 - 10.0 keV band is diffuse, and the remaining 30% is resolved into 49 discrete sources. Most of the discrete sources associated with the galaxy appear to be low mass X-ray binaries (LMXBs). The luminosity function of the LMXB sources is well-fit by a broken power-law with a break luminosity comparable to the Eddington luminosity for a 1.4 solar mass neutron star. It is likely that those sources with luminosities above the break are accreting black holes and those below are mostly neutron stars in binary systems. Spectra were extracted for the total emission, diffuse emission, and sum of the resolved sources; the spectral fits for all require a model including both a soft and hard component. The diffuse emission is predominately soft while the emission from the sources is mostly hard. Approximately 24% of the diffuse emission arises from unresolved LMXBs, with the remainder resulting from thermal emission from hot gas. There is a very bright source at the projected position of the nucleus of the galaxy. The spectrum and luminosity derived from this central source are consistent with it being an AGN; the galaxy also is a weak radio source. Finally, the diffuse emission exhibits significant substructure with an intriguing spiral feature passing through the center of the galaxy. The X-ray spectrum and surface brightness of the spiral feature are consistent with adiabatic or shock compression of ambient gas, but not with cooling. This feature may be due to compression of the hot interstellar gas by radio lobes or jets associated with the AGN.Comment: 23 pages using emulateapj.sty; ApJ, in press; revised version includes correction to error in the L_X,src/L_B ratio as well as other revision

    Acid gas removal from natural gas by water washing

    Get PDF
    Projections in the future energy scenario outline an important role played by fossil fuels to meet the increasing global energy demand. A “golden age” has been recently outlined for natural gas, in particular, as the fastest growing and the cleanest of all fossil fuels. Although natural gas is mostly considered to be a “clean” fuel with respect to the emission of pollutants from its combustion, the raw natural gas found in reservoir deposits is not free of contaminants. Among the others, hydrogen sulphide and carbon dioxide are two undesired compounds, which are responsible for the sour or acidic nature of natural gas and must be removed for operational and safety reasons. Acid gas treating is typically performed in facilities built at surface locations, mainly by means of chemical absorption into aqueous amine solutions. However, subsurface technologies may allow to possibly separate the gas undesired compounds directly downhole. The high pressure encountered in this environment makes the use of water as liquid absorbent worth considering. This work investigates the possibility of acid gas removal from natural gas by downhole water washing and presents a preliminary evaluation of the performances of the process, which is assumed to be carried out in the gas production casing that can be represented as a bubble column. A previously proposed correlation for the gas holdup in this type of contacting device operated counter-currently has been used to determine the volumetric mass transfer coefficient for design purposes, considering different raw gas flow rates and inlet acid gas concentrations. By solving a simplified model of a bubble column and by using water flow rates compatible with reinjection into the reservoir, it has been found that it is possible to reduce the H2S content from the inlet concentration to the commonly accepted value to meet pipeline specifications and, depending on the inlet CO2 concentration, to perform a bulk removal of it
    • …
    corecore