2,370 research outputs found

    Structure and Feedback in 30 Doradus I: Observations

    Get PDF
    We have completed a a new optical imaging and spectrophotometric survey of a 140 x 80 pc2^2 region of 30 Doradus centered on R136, covering key optical diagnostic emission lines including \Ha, \Hb, \Hg, [O III] λλ\lambda\lambda4363, 4959, 5007, [N II] λλ\lambda\lambda6548, 6584, [S II] λλ\lambda\lambda6717, 6731 [S III] λ\lambda 6312 and in some locations [S III] λ\lambda9069. We present maps of fluxes and intensity ratios for these lines, and catalogs of isolated ionizing stars, elephant-trunk pillars, and edge-on ionization fronts. The final science-quality spectroscopic data products are available to the public. Our analysis of the new data finds that, while stellar winds and supernovae undoubtedly produce shocks and are responsible for shaping the nebula, there are no global spectral signatures to indicate that shocks are currently an important source of ionization. We conclude that the considerable region covered by our survey is well described by photoionization from the central cluster where the ionizing continuum is dominated by the most massive O stars. We show that if 30 Dor were viewed at a cosmological distance, its integrated light would be dominated by its extensive regions of lower surface-brightness rather than by the bright, eye-catching arcs.Comment: 42 pages, 16 figures, Accepted for publication in ApJ

    Non Markovian Quantum Repeated Interactions and Measurements

    Full text link
    A non-Markovian model of quantum repeated interactions between a small quantum system and an infinite chain of quantum systems is presented. By adapting and applying usual pro jection operator techniques in this context, discrete versions of the integro-differential and time-convolutioness Master equations for the reduced system are derived. Next, an intuitive and rigorous description of the indirect quantum measurement principle is developed and a discrete non Markovian stochastic Master equation for the open system is obtained. Finally, the question of unravelling in a particular model of non-Markovian quantum interactions is discussed.Comment: 22 page

    Abundances of s-process elements in planetary nebulae: Br, Kr & Xe

    Get PDF
    We identify emission lines of post-iron peak elements in very high signal-to-noise spectra of a sample of planetary nebulae. Analysis of lines from ions of Kr and Xe reveals enhancements in most of the PNe, in agreement with the theories of s-process in AGB star. Surprisingly, we did not detect lines from Br even though s-process calculations indicate that it should be produced with Kr at detectable levels.Comment: 2 pages, 1 figure, to be published in the Proceedings of the IAU Symposium 234: Planetary Nebulae in Our Galaxy and Beyond, eds. M.J. Barlow, R.H. Mende

    The survival and destruction of X-ray coronae of early-type galaxies in the rich cluster environments: a case study of Abell 1367

    Full text link
    A new Chandra observation of the northwest region of the galaxy cluster A1367 reveals four cool galaxy coronae (0.4 - 1.0 keV) embedded in the hot intracluster medium (ICM) (5 - 6 keV). While the large coronae of NGC 3842 and NGC 3837 appear symmetric and relaxed, the galaxy coronae of the \lsim L* galaxies (NGC 3841 and CGCG 97090) are disturbed and being stripped. Massive galaxies, with dense cooling cores, are better able to resist ram pressure stripping and survive in rich environments than \lsim L* galaxies whose galactic coronae are much less dense. The survival of these cool coronae implies that thermal conduction from the hot surrounding ICM has to be suppressed by a factor of at least 60, at the corona boundary. Within the galaxy coronae of NGC 3842 and NGC 3837, stellar mass loss or heat conduction with the Spitzer value may be sufficient to balance radiative cooling. Energy deposition at the ends of collimated jets may heat the outer coronae, but allow the survival of a small, dense gas core (e.g., NGC 3842 in A1367 and NGC 4874 in Coma). The survived X-ray coronae become significantly smaller and fainter with the increasing ambient pressure.Comment: 11 pages, 7 figures, emulateapj5, accepted by Ap

    Feedback from massive stars at low metallicities : MUSE observations of N44 and N180 in the Large Magellanic Cloud

    Get PDF
    Accepted for publication in MNRAS, 27 pages, 21 figuresWe present MUSE integral field data of two HII region complexes in the Large Magellanic Cloud (LMC), N44 and N180. Both regions consist of a main superbubble and a number of smaller, more compact HII regions that formed on the edge of the superbubble. For a total of 11 HII regions, we systematically analyse the radiative and mechanical feedback from the massive O-type stars on the surrounding gas. We exploit the integral field property of the data and the coverage of the HeIIλ\lambda5412 line to identify and classify the feedback-driving massive stars, and from the estimated spectral types and luminosity classes we determine the stellar radiative output in terms of the ionising photon flux Q0Q_{0}. We characterise the HII regions in terms of their sizes, morphologies, ionisation structure, luminosity and kinematics, and derive oxygen abundances via emission line ratios. We analyse the role of different stellar feedback mechanisms for each region by measuring the direct radiation pressure, the pressure of the ionised gas, and the pressure of the shock-heated winds. We find that stellar winds and ionised gas are the main drivers of HII region expansion in our sample, while the direct radiation pressure is up to three orders of magnitude lower than the other terms. We relate the total pressure to the star formation rate per unit area, ΣSFR\Sigma_{SFR}, for each region and find that stellar feedback has a negative effect on star formation, and sets an upper limit to ΣSFR\Sigma_{SFR} as a function of increasing pressure.Peer reviewe

    Rotationally Warm Molecular Hydrogen in the Orion Bar

    Get PDF
    The Orion Bar is one of the nearest and best-studied photodissociation or photon-dominated regions (PDRs). Observations reveal the presence of H2 lines from vibrationally or rotationally excited upper levels that suggest warm gas temperatures (400 to 700 K). However, standard models of PDRs are unable to reproduce such warm rotational temperatures. In this paper we attempt to explain these observations with new comprehensive models which extend from the H+ region through the Bar and include the magnetic field in the equation of state. We adopt the model parameters from our previous paper which successfully reproduced a wide variety of spectral observations across the Bar. In this model the local cosmic-ray density is enhanced above the galactic background, as is the magnetic field, and which increases the cosmic-ray heating elevating the temperature in the molecular region. The pressure is further enhanced above the gas pressure in the H+ region by the momentum transferred from the absorbed starlight. Here we investigate whether the observed H2 lines can be reproduced with standard assumptions concerning the grain photoelectric emission. We also explore the effects due to the inclusion of recently computed H2 + H2, H2 + H and H2 + He collisional rate coefficients.Comment: Accepted for publication in ApJ (34 pages, including 16 figures
    corecore