4,597 research outputs found

    Non Markovian Quantum Repeated Interactions and Measurements

    Full text link
    A non-Markovian model of quantum repeated interactions between a small quantum system and an infinite chain of quantum systems is presented. By adapting and applying usual pro jection operator techniques in this context, discrete versions of the integro-differential and time-convolutioness Master equations for the reduced system are derived. Next, an intuitive and rigorous description of the indirect quantum measurement principle is developed and a discrete non Markovian stochastic Master equation for the open system is obtained. Finally, the question of unravelling in a particular model of non-Markovian quantum interactions is discussed.Comment: 22 page

    Eliashberg theory with ab-initio Coulomb interactions: a minimal numerical scheme applied to layered superconductors

    Get PDF
    We present a minimal approach to include static Coulomb interactions in Eliashberg theory of superconductivity from first principles. The method can be easily implemented in any existing Eliashberg code (isotropic or anisotropic) to avoid the standard use of the semiempirical parameter μ*, which adds unnecessary uncertainty to Tc predictions. We evaluate the prediction accuracy of the method by simulating the superconducting properties of a set of layered superconductors, which feature unconventional Coulomb effects: CaC6, MgB2, Li-doped β-ZrNCl and YNi2B2C. We find that the estimated critical temperatures are consistent with those from ab-initio density functional theory for superconductors, and in close agreement with the experimental values

    New Techniques for Relating Dynamically Close Galaxy Pairs to Merger and Accretion Rates : Application to the SSRS2 Redshift Survey

    Get PDF
    We introduce two new pair statistics, which relate close galaxy pairs to the merger and accretion rates. We demonstrate the importance of correcting these (and other) pair statistics for selection effects related to sample depth and completeness. In particular, we highlight the severe bias that can result from the use of a flux-limited survey. The first statistic, denoted N_c, gives the number of companions per galaxy, within a specified range in absolute magnitude. N_c is directly related to the galaxy merger rate. The second statistic, called L_c, gives the total luminosity in companions, per galaxy. This quantity can be used to investigate the mass accretion rate. Both N_c and L_c are related to the galaxy correlation function and luminosity function in a straightforward manner. We outline techniques which account for various selection effects, and demonstrate the success of this approach using Monte Carlo simulations. If one assumes that clustering is independent of luminosity (which is appropriate for reasonable ranges in luminosity), then these statistics may be applied to flux-limited surveys. These techniques are applied to a sample of 5426 galaxies in the SSRS2 redshift survey. Using close dynamical pairs, we find N_c(-21<M_B<-18) = 0.0226+/-0.0052 and L_c(-21<M_B<-18) = 0.0216+/-0.0055 10^{10} h^2 L_sun at z=0.015. These are the first secure estimates of low-z close pair statistics. If N_c remains fixed with redshift, simple assumptions imply that ~ 6.6% of present day galaxies with -21<M_B<-18 have undergone mergers since z=1. When applied to redshift surveys of more distant galaxies, these techniques will yield the first robust estimates of evolution in the galaxy merger and accretion rates. [Abridged]Comment: 26 pages (including 10 postscript figures) plus 3 gif figures. Accepted for publication in ApJ. Paper (including full resolution images) also available at http://www.astro.utoronto.ca/~patton/ssrs2, along with associated pair classification experiment (clickable version of Figure 5

    Kerr-Newman Solution and Energy in Teleparallel Equivalent of Einstein Theory

    Get PDF
    An exact charged axially symmetric solution of the coupled gravitational and electromagnetic fields in the teleparallel equivalent of Einstein theory is derived. It is characterized by three parameters `` the gravitational mass MM, the charge parameter QQ and the rotation parameter aa" and its associated metric gives Kerr-Newman spacetime. The parallel vector field and the electromagnetic vector potential are axially symmetric. We then, calculate the total energy using the gravitational energy-momentum. The energy is found to be shared by its interior as well as exterior. Switching off the charge parameter we find that no energy is shared by the exterior of the Kerr-Newman black hole.Comment: 11 pages, Latex. Will appear in Mod. Phys. Lett.

    Energy and angular momentum of general 4-dimensional stationary axi-symmetric spacetime in teleparallel geometry

    Full text link
    We derive an exact general axi-symmetric solution of the coupled gravitational and electromagnetic fields in the tetrad theory of gravitation. The solution is characterized by four parameters MM (mass), QQ (charge), aa (rotation) and LL (NUT). We then, calculate the total exterior energy using the energy-momentum complex given by M{\o}ller in the framework of Weitzenbo¨\ddot{o}ck geometry. We show that the energy contained in a sphere is shared by its interior as well as exterior. We also calculate the components of the spatial momentum to evaluate the angular momentum distribution. We show that the only non-vanishing components of the angular momentum is in the Z direction.Comment: Latex. Will appear in IJMP

    The Off-Shell Electromagnetic T-matrix: momentum-dependent scattering from spherical inclusions with both dielectric and magnetic contrast

    Full text link
    The momentum- and frequency-dependent T-matrix operator for the scattering of electromagnetic waves by a dielectric/conducting and para- or diamagnetic sphere is derived as a Mie-type series, and presented in a compact form emphasizing various symmetry properties, notably the unitarity identity. This result extends to magnetic properties one previously obtained for purely dielectric contrasts by other authors. Several situations useful to spatially-dispersive effective-medium approximations to one-body order are examined. Partial summation of the Mie series is achieved in the case of elastic scattering.Comment: 22 pages. Preprint of a paper to appear in `Waves in Complex And Random Media' ((c) Taylor and Francis, 2011

    Photoassociative spectroscopy at long range in ultracold strontium

    Get PDF
    We report photoassociative spectroscopy of 88^{88}Sr2_2 in a magneto-optical trap operating on the 1S0→3P1{^1S_0}\to{^3P_1} intercombination line at 689 nm. Photoassociative transitions are driven with a laser red-detuned by 600-2400 MHz from the 1S0→1P1{^1S_0}\to{^1P_1} atomic resonance at 461 nm. Photoassociation takes place at extremely large internuclear separation, and the photoassociative spectrum is strongly affected by relativistic retardation. A fit of the transition frequencies determines the 1P1{^1P_1} atomic lifetime (τ=5.22±0.03\tau=5.22 \pm 0.03 ns) and resolves a discrepancy between experiment and recent theoretical calculations.Comment: 4 pages, 4 figures, submitte
    • …
    corecore