15 research outputs found

    The Peach RGF/GLV Signaling Peptide pCTG134 Is Involved in a Regulatory Circuit That Sustains Auxin and Ethylene Actions

    Get PDF
    In vascular plants the cell-to-cell interactions coordinating morphogenetic and physiological processes are mediated, among others, by the action of hormones, among which also short mobile peptides were recognized to have roles as signals. Such peptide hormones (PHs) are involved in defense responses, shoot and root growth, meristem homeostasis, organ abscission, nutrient signaling, hormone crosstalk and other developmental processes and act as both short and long distant ligands. In this work, the function of CTG134, a peach gene encoding a ROOT GROWTH FACTOR/GOLVEN-like PH expressed in mesocarp at the onset of ripening, was investigated for its role in mediating an auxin-ethylene crosstalk. In peach fruit, where an auxin-ethylene crosstalk mechanism is necessary to support climacteric ethylene synthesis, CTG134 expression peaked before that of ACS1 and was induced by auxin and 1-methylcyclopropene (1-MCP) treatments, whereas it was minimally affected by ethylene. In addition, the promoter of CTG134 fused with the GUS reporter highlighted activity in plant parts in which the auxin-ethylene interplay is known to occur. Arabidopsis and tobacco plants overexpressing CTG134 showed abnormal root hair growth, similar to wild-type plants treated with a synthetic form of the sulfated peptide. Moreover, in tobacco, lateral root emergence and capsule size were also affected. In Arabidopsis overexpressing lines, molecular surveys demonstrated an impaired hormonal crosstalk, resulting in a re-modulated expression of a set of genes involved in both ethylene and auxin synthesis, transport and perception. These data support the role of pCTG134 as a mediator in an auxin-ethylene regulatory circuit and open the possibility to exploit this class of ligands for the rational design of new and environmental friendly agrochemicals able to cope with a rapidly changing environment

    Genetically-Driven Enhancement of Dopaminergic Transmission Affects Moral Acceptability in Females but Not in Males: A Pilot Study

    Get PDF
    Moral behavior has been a key topic of debate for philosophy and psychology for a long time. In recent years, thanks to the development of novel methodologies in cognitive sciences, the question of how we make moral choices has expanded to the study of neurobiological correlates that subtend the mental processes involved in moral behavior. For instance, in vivo brain imaging studies have shown that distinct patterns of brain neural activity, associated with emotional response and cognitive processes, are involved in moral judgment. Moreover, while it is well-known that responses to the same moral dilemmas differ across individuals, to what extent this variability may be rooted in genetics still remains to be understood. As dopamine is a key modulator of neural processes underlying executive functions, we questioned whether genetic polymorphisms associated with decision-making and dopaminergic neurotransmission modulation would contribute to the observed variability in moral judgment. To this aim, we genotyped five genetic variants of the dopaminergic pathway [rs1800955 in the dopamine receptor D4 (DRD4) gene, DRD4 48 bp variable number of tandem repeat (VNTR), solute carrier family 6 member 3 (SLC6A3) 40 bp VNTR, rs4680 in the catechol-O-methyl transferase (COMT) gene, and rs1800497 in the ankyrin repeat and kinase domain containing 1 (ANKK1) gene] in 200 subjects, who were requested to answer 56 moral dilemmas. As these variants are all located in genes belonging to the dopaminergic pathway, they were combined in multilocus genetic profiles for the association analysis. While no individual variant showed any significant effects on moral dilemma responses, the multilocus genetic profile analysis revealed a significant gender-specific influence on human moral acceptability. Specifically, those genotype combinations that improve dopaminergic signaling selectively increased moral acceptability in females, by making their responses to moral dilemmas more similar to those provided by males. As females usually give more emotionally-based answers and engage the “emotional brain” more than males, our results, though preliminary and therefore in need of replication in independent samples, suggest that this increase in dopamine availability enhances the cognitive and reduces the emotional components of moral decision-making in females, thus favoring a more rationally-driven decision process

    Action Observation Plus Sonification. A Novel Therapeutic Protocol for Parkinson\u2019s Patient with Freezing of Gait

    Get PDF
    Freezing of gait (FoG) is a disabling symptom associated to falls, with little or no responsiveness to pharmacological treatment. Current protocols used for rehabilitation are based on the use of external sensory cues. However, cued strategies might generate an important dependence on the environment. Teaching motor strategies without cues (i.e. action observation - AO - plus sonification) could represent an alternative/innovative approach to rehabilitation that matters most on appropriate allocation of attention and lightening cognitive load. We aimed to test the effects of a novel experimental protocol to treat patients with Parkinson disease (PD) and freezing of gait, using functional, and clinical scales. The experimental protocol was based on action observation plus sonification. 12 patients were treated with 8 motor gestures. They watched 8 videos showing an actor performing the same 8 gestures, and then tried to repeat each gesture. Each video was composed by images and sounds of the gestures. By means of the sonification technique, the sounds of gestures were obtained by transforming kinematic data (velocity) recorded during gesture execution, into pitch variations. The same 8 motor gestures were also used in a second group of 10 patients; which were treated with a standard protocol based on a common sensory stimulation method. All patients were tested with functional and clinical scales before, after, at 1 month, and 3 months after the treatment. Data showed that the experimental protocol have positive effects on functional and clinical tests. In comparison with the baseline evaluations, significant performance improvements were seen in the N-FOG questionnaire, and the UPDRS (part 3 and 2). Importantly, all these improvements were consistently observed at the end, 1 month, and 3 months after treatment. No improvements effects were found in the group of patients treated with the standard protocol. These data suggest that a multisensory approach based on action observation plus sonification, with the two stimuli semantically related, could help PD patients with FoG to re-learn gait movements, to reduce freezing episodes, and that these effects could be prolonged over time

    Treatment of Fatigue in Multiple Sclerosis Patients: A Neurocognitive Approach

    Get PDF
    The objective of the study was to treat fatigue in patients with multiple sclerosis (MS) by a neurocognitive rehabilitation program aimed at improving motor planning by using motor imagery (MI). Twenty patients with clinically definite MS complaining of fatigue were treated for five weeks with exercises of neurocognitive rehabilitation twice a week. Patients were evaluated by Fatigue Severity Scale (FSS), Modified Fatigue Impact Scale (MFIS), MSQoL54, Expanded Disability Status Scale (EDSS), and MS Functional Composite (MSFC). After treatment, a decrease in fatigue was detected with both FSS (P = 0.0001) and MFIS (P = 0.0001). MSFC (P = 0.035) and MSQoL54 (P = 0.002) scores improved compared to baseline. At six-month followup, the improvement was confirmed for fatigue (FSS, P = 0.0001; MFIS P = 0.01) and for the physical subscale of MSQoL54 (P = 0.049). No differences in disability scales were found. These results show that neurocognitive rehabilitation, based on MI, could be a strategy to treat fatigue in MS patients

    Action Observation Plus Sonification. A Novel Therapeutic Protocol for Parkinson’s Patient with Freezing of Gait

    No full text
    Freezing of gait (FoG) is a disabling symptom associated with falls, with little or no responsiveness to pharmacological treatment. Current protocols used for rehabilitation are based on the use of external sensory cues. However, cued strategies might generate an important dependence on the environment. Teaching motor strategies without cues [i.e., action observation (AO) plus Sonification] could represent an alternative/innovative approach to rehabilitation that matters most on appropriate allocation of attention and lightening cognitive load. We aimed to test the effects of a novel experimental protocol to treat patients with Parkinson’s disease (PD) and FoG, using functional, and clinical scales. The experimental protocol was based on AO plus Sonification. 12 patients were treated with 8 motor gestures. They watched eight videos showing an actor performing the same eight gestures, and then tried to repeat each gesture. Each video was composed by images and sounds of the gestures. By means of the Sonification technique, the sounds of gestures were obtained by transforming kinematic data (velocity) recorded during gesture execution, into pitch variations. The same 8 motor gestures were also used in a second group of 10 patients; which were treated with a standard protocol based on a common sensory stimulation method. All patients were tested with functional and clinical scales before, after, at 1 month, and 3 months after the treatment. Data showed that the experimental protocol have positive effects on functional and clinical tests. In comparison with the baseline evaluations, significant performance improvements were seen in the NFOG questionnaire, and the UPDRS (parts II and III). Importantly, all these improvements were consistently observed at the end, 1 month, and 3 months after treatment. No improvement effects were found in the group of patients treated with the standard protocol. These data suggest that a multisensory approach based on AO plus Sonification, with the two stimuli semantically related, could help PD patients with FoG to relearn gait movements, to reduce freezing episodes, and that these effects could be prolonged over time

    Joint effect of insulin signaling genes on insulin secretion and glucose homeostasis.

    No full text
    CONTEXT: Reduced insulin signaling in insulin secreting β-cells causes defective insulin secretion and hyperglycemia in mice. OBJECTIVE: We investigated whether functional polymorphisms affecting insulin signaling (ie, ENPP1 K121Q, rs1044498; IRS1 G972R, rs1801278; and TRIB3 Q84R, rs2295490) exert a joint effect on insulin secretion and abnormal glucose homeostasis (AGH). DESIGN: Insulin secretion was evaluated by 1) the disposition index (DI) from an oral glucose tolerance test (OGTT) in 829 individuals; 2) insulin secretion stimulation index (SI) in islets from nondiabetic donors after glucose (n = 92) or glibenclamide (n = 89) stimulation. AGH (including impaired fasting glucose and/or impaired glucose tolerance or type 2 diabetes; T2D) was evaluated in case-control studies from the GENetics of Type 2 Diabetes in Italy and the United States (GENIUS T2D) Consortium (n = 6607). RESULTS: Genotype risk score, obtained by totaling individual weighted risk allele effects, was associated with the following: 1) DI (P = .005); 2) glucose and glibenclamide SI (P = .046 and P = .009); or 3) AGH (odds ratio 1.08, 95% confidence interval 1.03-1.13; P = .001). We observed an inverse relationship between genetic effect and age at AGH onset, as indicated by a linear correlation between AGH-genotype risk score odds ratios and age-at-diagnosis cutoffs (R(2) = 0.80, P < .001). CONCLUSIONS: Functional polymorphisms affecting insulin signaling exert a joint effect on both in vivo and in vitro insulin secretion as well as on early-onset AGH. Our data provide further evidence that abnormal insulin signaling reduces β-cell function and impairs glucose homeostasis
    corecore