108 research outputs found

    Oscillatory Behavior in a Model of Non-Markovian Mean Field Interacting Spins

    Get PDF
    We analyze a non-Markovian mean field interacting spin system, related to the Curie\u2013Weiss model. We relax the Markovianity assumption by replacing the memoryless distribution of the waiting times of a classical spin-flip dynamics with a distribution with memory. The resulting stochastic evolution for a single particle is a spin-valued renewal process, an example of a two-state semi-Markov process. We associate to the individual dynamics an equivalent Markovian description, which is the subject of our analysis. We study a corresponding interacting particle system, where a mean field interaction-depending on the magnetization of the system-is introduced as a time scaling on the waiting times between two successive particle\u2019s jumps. Via linearization arguments on the Fokker\u2013Planck mean field limit equation, we give evidence of emerging periodic behavior. Specifically, numerical analysis on the discrete spectrum of the linearized operator, characterized by the zeros of an explicit holomorphic function, suggests the presence of a Hopf bifurcation for a critical value of the temperature. The presence of a Hopf bifurcation in the limit equation matches the emergence of a periodic behavior obtained by simulating the N-particle system

    Oscillatory Behavior in a Model of Non-Markovian Mean Field Interacting Spins

    Get PDF
    We analyze a non-Markovian mean field interacting spin system, related to the Curie\u2013Weiss model. We relax the Markovianity assumption by replacing the memoryless distribution of the waiting times of a classical spin-flip dynamics with a distribution with memory. The resulting stochastic evolution for a single particle is a spin-valued renewal process, an example of a two-state semi-Markov process. We associate to the individual dynamics an equivalent Markovian description, which is the subject of our analysis. We study a corresponding interacting particle system, where a mean field interaction-depending on the magnetization of the system-is introduced as a time scaling on the waiting times between two successive particle\u2019s jumps. Via linearization arguments on the Fokker\u2013Planck mean field limit equation, we give evidence of emerging periodic behavior. Specifically, numerical analysis on the discrete spectrum of the linearized operator, characterized by the zeros of an explicit holomorphic function, suggests the presence of a Hopf bifurcation for a critical value of the temperature. The presence of a Hopf bifurcation in the limit equation matches the emergence of a periodic behavior obtained by simulating the N-particle system

    On the recurrence and robust properties of Lorenz'63 model

    Full text link
    Lie-Poisson structure of the Lorenz'63 system gives a physical insight on its dynamical and statistical behavior considering the evolution of the associated Casimir functions. We study the invariant density and other recurrence features of a Markov expanding Lorenz-like map of the interval arising in the analysis of the predictability of the extreme values reached by particular physical observables evolving in time under the Lorenz'63 dynamics with the classical set of parameters. Moreover, we prove the statistical stability of such an invariant measure. This will allow us to further characterize the SRB measure of the system.Comment: 44 pages, 7 figures, revised version accepted for pubblicatio

    Glass-ceramics: Their production from wastes-a review

    No full text

    Thermodynamic properties of benzoylferrocene and 1,1'-dibenzoylferrocene

    No full text

    A hierarchical mean field model of interacting spins

    No full text
    We consider a system of hierarchical interacting spins under dynamics of spin-flip type with a ferromagnetic mean field interaction, scaling with the hierarchical distance, coupled with a system of linearly interacting hierarchical diffusions of Ornstein-Uhlenbeck type. In particular, the diffusive variables enter in the spin-flip rates, effectively acting as dynamical magnetic fields. In absence of the diffusions, the spin-flip dynamics can be thought of as a modification of the Curie-Weiss model. We study the mean field and the two-level hierarchical model, in the latter case restricting to a subcritical regime, corresponding to high temperatures, obtaining macroscopic limits at different spatio-temporal scales and studying the phase transitions in the system. We also formulate a generalization of our results to the kth level hierarchical case, for any k finite, in the subcritical regime. We finally address the supercritical regime, in the zero-temperature limit, for the two-level hierarchical case, proceeding heuristically with the support of numerics. (C) 2021 Elsevier B.V. All rights reserved
    • …
    corecore