5 research outputs found

    Design and realization of a wide field of view infrared scanning system with an integrated micro-electromechanical system mirror

    Get PDF
    We present a wide field of view (FOV) infrared scanning system, designed for single-pixel near-infrared thermal imaging. The scanning system consisted of a two-axis micro-electromechanical system (MEMS) mirror that was incorporated within the lens. The optical system consisted of two groups of lenses and a silicon avalanche photodiode. The system was designed for both the production of thermal images and also to utilize the techniques of radiation thermometry to measure the absolute temperature of targets from 500°C to 1100°C. Our system has the potential for real-time image acquisition, with improved data acquisition electronics. The FOV of our scanning system was ±30° when fully utilizing the MEMS mirror’s scanning angle of ±5°. The pixel FOV (calculated from the distance to target size ratio) was 100:1. The image quality was analyzed, including the modulation transfer function, spot diagrams, ray fan plots, lateral chromatic aberrations, distortion, relative illumination, and size-of-source effect. The instrument was fabricated in our laboratory, and one of the thermal images, which was taken with the new lens, is presented as an example of the instrument optical performance

    A miniaturized optical gas-composition sensor with integrated sample chamber

    No full text
    A robust and highly miniaturized optical gas sensor based on optical absorption spectroscopy is presented. By using the resonator cavity of a linear variable optical filter (LVOF) also as a gas chamber, a compact and robust optical sensor is achieved. The device operates at the 15th order in 3.2–3.4 μm wavelength range for distinguishing hydrocarbons. The physical cavity length at the μm-level is translated into an effective optical absorption path length at the mm-level by the use of highly reflective (R > 98%) Bragg mirrors. The optical design using the Fizeau interferometer approach is described. Moreover, the CMOS-compatible fabrication method is explained. In addition to the wideband and single wavelength filter characterization, absorption of methane in the LVOF cavity is demonstrated at 3392 nm and 3416.60 nm wavelengths
    corecore