12 research outputs found

    Phase measurement using DIC microscopy

    Get PDF
    The development of fluorescent probes and proteins has helped make light microscopy more popular by allowing the visualization of specific subcellular components, location and dynamics of biomolecules. However, it is not always feasible to label the cells as it may be phototoxic or perturb their functionalities. Label-free microscopy techniques allow us to work with live cells without perturbation and to evaluate morphological differences, which in turn can provide useful information for high-throughput assays. In this study, we use one of the most popular label-free techniques called differential interference contrast (DIC) microscopy to estimate the phase of cells and other nearly transparent objects and instantly estimate their height. DIC images provide detailed information about the optical path length (OPL) differences in the sample and they are visually similar to a gradient image. Our previous DIC construction algorithm outputs an image where the values are proportional to the OPL (or implicitly the phase) of the sample. Although the reconstructed images are capable of describing cellular morphology and to a certain extent turn DIC into a quantitative technique, the actual OPL has to be computed from the input DIC image and the microscope calibration settings. Here we propose a computational method to measure the phase and approximate height of cells after microscope calibration, assuming a linear formation model. After a calibration step the phase of further samples can be determined when the refractive indices of the sample and the surrounding medium is known. The precision of the method is demonstrated on reconstructing the thickness of known objects and real cellular samples

    Combination of small molecule microarray and confocal microscopy techniques for live cell staining fluorescent dye discovery

    Get PDF
    Discovering new fluorochromes is significantly advanced by high-throughput screening (HTS) methods. In the present study a combination of small molecule microarray (SMM) prescreening and confocal laser scanning microscopy (CLSM) was developed in order to discover novel cell staining fluorescent dyes. Compounds with high native fluorescence were selected from a 14,585-member library and further tested on living cells under the microscope. Eleven compartment- specific, cell-permeable (or plasma membrane-targeted) fluorochromes were identified. Their cytotoxicity was tested and found that between 1-10 micromolar range, they were non-toxic even during long-term incubations. © 2013 by the authors; licensee MDPI, Basel, Switzerland

    Oxidized Phospholipids Inhibit the Formation of Cholesterol-Dependent Plasma Membrane Nanoplatforms

    Get PDF
    We previously developed a single-molecule microscopy method termed TOCCSL (thinning out clusters while conserving stoichiometry of labeling), which allows for direct imaging of stable nanoscopic platforms with raft-like properties diffusing in the plasma membrane. As a consensus raft marker, we chose monomeric GFP linked via a glycosylphosphatidylinositol (GPI) anchor to the cell membrane (mGFP-GPI). With this probe, we previously observed cholesterol-dependent homo-association to nanoplatforms diffusing in the plasma membrane of live CHO cells. Here, we report the release of this homo-association upon addition of 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) or 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine, two oxidized phospholipids (oxPLs) that are typically present in oxidatively modified low-density lipoprotein. We found a dose-response relationship for mGFP-GPI nanoplatform disintegration upon addition of POVPC, correlating with the signal of the apoptosis marker Annexin V-Cy3. Similar concentrations of lysolipid showed no effect, indicating that the observed phenomena were not linked to properties of the lipid bilayer itself. Inhibition of acid sphingomyelinase by NB-19 before addition of POVPC completely abolished nanoplatform disintegration by oxPLs. In conclusion, we were able to determine how oxidized lipid species disrupt mGFP-GPI nanoplatforms in the plasma membrane. Our results favor an indirect mechanism involving acid sphingomyelinase activity rather than a direct interaction of oxPLs with nanoplatform constituents. © 2016 Biophysical Society

    Farklı koşullarda büyütülen Rhodobacter capsulatus bakterisinin hidrojen üretim mekanizmasının proteomiks yöntemi ile analizi.

    No full text
    Rhodobacter capsulatus is a versatile organism capable of growing on different growth conditions including photofermentation in the presence of carbon source, aerobic respiration, anaerobic respiration in the presence of an external electron acceptor such as DMSO. The photofermentative growth of R.capsulatus results in hydrogen production which stands out as an environmentally harmless method to produce hydrogen and accepted as one of the most promising process. Due to the serious problems such as as global climate change and environmental pollution caused by the fossil fuels, there is an increasing requirement for a clean and sustainable energy source. Furtherrmore, the ability of R.capsulatus to fix nitrogen, to use solar energy makes it a model to study various aspects of its metabolism. Thus the goal of this study is to increase the potential in biohydrogen production with the photofermentative bacteria and to investigate the proteins playing roles in different growth modes of the bacteria. In the present study, protein profiles of Rhodobacter capsulatus grown on respiratory, anaerobic respiratory and photofermentative growth modes were obtained. LC-MS/MS system is used to analyze the proteome as a high throughput technique. Physiological analysis such as HPLC for the analysis of the carbon source consumption, GC and analysis of pigments were carried out to state the environmental conditions. As a result, total of 460 proteins were identified with 17 proteins being unique to particular growth condition. Ratios of the proteins in different growth conditions were compared and important proteins were highlighted.M.S. - Master of Scienc

    Phase measurement using DIC microscopy

    No full text
    The development of uorescent probes and proteins has helped make light microscopy more popular by allowing the visualization of specific subcellular components, location and dynamics of biomolecules. However, it is not always feasible to label the cells as it may be phototoxic or perturb their functionalities. Label-free microscopy techniques allow us to work with live cells without perturbation and to evaluate morphological differences, which in turn can provide useful information for high-throughput assays. In this study, we use one of the most popular label-free techniques called differential interference contrast (DIC) microscopy to estimate the phase of cells and other nearly transparent objects and instantly estimate their height. DIC images provide detailed information about the optical path length (OPL) differences in the sample and they are visually similar to a gradient image. Our previous DIC reconstruction algorithm outputs an image where the values are proportional to the OPL (or implicitly the phase) of the sample. Although the reconstructed images are capable of describing cellular morphology and to a certain extent turn DIC into a quantitative technique, the actual OPL has to be computed from the input DIC image and the microscope calibration settings. Here we propose a computational method to measure the phase and approximate height of cells after microscope calibration, assuming a linear formation model. After a calibration step the phase of further samples can be determined when the refractive indices of the sample and the surrounding medium is known. The precision of the method is demonstrated on recon-structing the thickness of known objects and real cellular samples

    Antioxidant responses of peanut (Arachis hypogaea L.) seedlings to prolonged salt-induced stress

    No full text
    In this study, the effects of long-term NaCl treatment were investigated in two cultivars of peanut designated as drought-resistant and drought-sensitive. Growth parameters, changes in the concentrations of MDA, H2O2 and proline, and the activities of antioxidant enzymes were determined under salinity stress. Growth parameters indicated the superiority of cv. Florispan to cv. Gazipaşa under milder salinity stress treatment. However, comparative analysis of the two cultivars showed that MDA, H2O2, ion leakage levels and photosystem II activities were not significantly different, except for the proline activity, which increased only in Florispan leaf tissues under 100 mM salt treatment. Among the processes that govern the tolerance in peanut tissues, proline level and the activity of glutathione reductase (GR) appeared to be only components that play an important part in salt stress protection

    Distinct Cellular Tools of Mild Hyperthermia-Induced Acquired Stress Tolerance in Chinese Hamster Ovary Cells

    Get PDF
    Mild stress could help cells to survive more severe environmental or pathophysiological conditions. In the current study, we investigated the cellular mechanisms which contribute to the development of stress tolerance upon a prolonged (0–12 h) fever-like (40 °C) or a moderate (42.5 °C) hyperthermia in mammalian Chinese Hamster Ovary (CHO) cells. Our results indicate that mild heat triggers a distinct, dose-dependent remodeling of the cellular lipidome followed by the expression of heat shock proteins only at higher heat dosages. A significant elevation in the relative concentration of saturated membrane lipid species and specific lysophosphatidylinositol and sphingolipid species suggests prompt membrane microdomain reorganization and an overall membrane rigidification in response to the fluidizing heat in a time-dependent manner. RNAseq experiments reveal that mild heat initiates endoplasmic reticulum stress-related signaling cascades resulting in lipid rearrangement and ultimately in an elevated resistance against membrane fluidization by benzyl alcohol. To protect cells against lethal, protein-denaturing high temperatures, the classical heat shock protein response was required. The different layers of stress response elicited by different heat dosages highlight the capability of cells to utilize multiple tools to gain resistance against or to survive lethal stress conditions
    corecore