13 research outputs found

    Gamified Solutions in Healthcare - Testing Rehabilitation Games in Finland and Asia

    Get PDF
    This paper presents a comprehensive summary of the Gamified Solutions in Healthcare (GSH) research project, which is a joint research project between Turku University of Applied Sciences and the University of Turku. The goal of the project is to promote exercise, social inclusiveness and enhance quality of life, aiming at developing new services and effective activity solutions for the elderly through gamification. During the research project elderly people were included in the development and testing of games so that they could be used for more than just entertainment purposes. According to all of our tests elderly enjoy playing exergames, and digital games can be an effective way to enhance the quality of life of the elderly. In the case studies it was observed that the players where motivated while playing but motivation should also be maintained throughout the gameplay. The elderly gave overall positive feedback for the idea of using digital activity games for exercising. </div

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    LabLife3D - a science-based 3D virtual learning environment : designing virtual laboratories: from pedagogical design to learning analytics

    Get PDF
    The digital native generation has been growing up in a world of virtual environments, digital games, social media and mobile internet. This generation is used to different forms of communication and has adapted itself to using various kinds of virtual environments since very young age. LabLife3D is a virtual learning environment designed for the communication habits of the digital natives to answer their educational demands in the future. The objective of this study is to identify the affordances of this virtual learning environment and to recognize its barriers and enablers to learning. The study also aims to explore how the students can receive support and feedback for authentic learning from the teacher or the virtual learning environment. During the project, a 3-dimensional virtual learning environment was developed in a virtual world (Second Life). This virtual microbiology and organic chemistry laboratory facilitates several learning activities and is also equipped with a data gathering system for research purposes using big data in learning analytics. Several motivators were identified during the project for choosing a virtual world as a learning platform, including opportunities for learning-by-doing and experiential learning. This study also documents the requirements for the design team and software architecture, as well as provides insight into improving the learning environment based on user feedback and usability studies. Feedback was gathered from several groups of students and a group of teachers together with automatically recorded data from the learning environment. The results suggest that virtual laboratory enables authentic learning, but that it can also create technical barriers to learning. Technology rejection can for example hinder acceptance of new digital learning methods, especially for teachers. This study concludes that virtual environments of one or another form will become more significant for learning and education in the future.Diginatiivien sukupolvi on kasvanut maailmassa, jossa virtuaaliset ympäristöt, digitaaliset pelit, sosiaalinen media ja mobiili internet ovat arkipäivää. Nettisukupolvi on tottunut käyttämään monia erilaisia viestintämuotoja ja sopeutunut toimimaan erilaisissa virtuaalisissa ympäristöissä jo varhaislapsuudesta alkaen. LabLife3D-projektin avainkysymys oli, millaisia oppimisympäristöjä kasvava sukupolvi tarvitsee tulevaisuuden opinnoissaan. Tutkimusprojektin tavoitteena oli selvittää, kuinka affordanssit oppimiselle voidaan tunnistaa, mitkä ovat oppimisen esteitä ja mahdollistajia virtuaalisessa ympäristössä ja miten oppija saa autenttiselle oppimiselle tukea joko opettajilta tai virtuaaliselta ympäristöltä. Projektin aikana kehitettiin kolmiulotteinen oppimisympäristö virtuaalimaailmaan (Second Life). Virtuaalisessa mikrobiologian ja orgaanisen kemian laboratoriossa on mahdollista suorittaa useita erilaisia oppimistehtäviä. Ympäristö sisältää myös tiedonkeruujärjestelmän oppimisanalytiikan ja big datan tutkimusta varten. Tutkimuksessa tunnistettiin useita virtuaalimaailmojen opetuskäyttöä puoltavia seikkoja, kuten mahdollisuudet tekemällä oppimiseen ja kokemusperäiseen oppimiseen. Tutkimus myös dokumentoi vaatimukset monialaiselle suunnittelutiimille ja ohjelmistoarkkitehtuurille sekä tarjoaa tietoa oppimisympäristön kehittämisestä käyttäjäpalautteen ja käytettävyystutkimuksien pohjalta. Palautetta kerättiin useilta opiskelijaryhmiltä, opettajistolta ja automaattisen tiedonkeruujärjestelmän tallenteista. Tutkimuksen tulokset osoittavat, että autenttista oppimista tapahtuu virtuaalilaboratoriossa, mutta että teknologia voi olla esteenä oppimiselle. Lisäksi teknologian vastustus voi haitata uusien digitaalisten oppimismenetelmien käyttöönottoa ja hyväksyntää etenkin opettajien keskuudessa. Tuloksista voidaan kuitenkin päätellä, että virtuaaliset ympäristöt muodossa tai toisessa tulevat olemaan yhä merkittävämpi osa oppimista ja koulutusta tulevaisuudessa

    Viihdepeleillä digiloikka kielten oppimiseen

    No full text
    Voiko oppiminen olla hauskaa? Tätä kysyttiin opettajilta kyselytutkimuksessa muutama vuosi sitten. Melko moni vastaajista oli sitä mieltä, että oppimisen tulisi sisältää myös iloa ja löytämisen riemua. Kuitenkin usea kyselyyn vastanneista opettajista esitti, että oppimistapahtuma on lapsen tai nuoren työtä, ja työ ei voi olla pelkästään hauskaa. Tuloksia saadaan vain sillä, että suhtaudutaan työn tekemiseen sen ansaitsemalla vakavuudella, ja ahkera työskentelijä palkitaan hyvillä oppimistuloksilla. Kuinka tähän ajatusmaailmaan suhteutuu verrattain tuoreet tutkimustulokset, jotka osoittavat että pojat saavat parempia arvosanoja esimerkiksi englanninkielen ylioppilaskokeesta, nimenomaan viihdepelien ansiosta?nonPeerReviewe

    Design of Virtual Learning Environments

    No full text
    The future of educational technology has been envisioned to have increasing focus on simulations, game based learning, virtual learning environments and virtual worlds. The technologies aim to provide authentic learning and enable deeper, more complex and contextual understanding for students. To study the impact of virtual learning environments for natural sciences and engineering education, we have designed and implemented a virtual laboratory, LabLife3D, in Second Life. To date we have designed six virtual laboratory exercises in the biological sciences and chemistry and additionally created a system to gather behavioristic data during laboratory simulations for the purpose of learning analytics. This paper presents the design process of laboratory exercises and discusses the contentspecific learning goals and outcomes. Additionally, this paper discusses the use of heuristic usability review used to improve the virtual learning environment. Lastly, the results from student and teacher interviews are presented, together with results of the learning analytics study. The discussion also includes student identified affordances and barriers for learning. We conclude that authentic and deep learning is possible within virtual worlds. Furthermore, the results of this study are not only limited to virtual worlds, but could also apply to other areas of digital educational technology.Peer reviewe

    Design of Virtual Learning Environments: Learning Analytics and Identification of Affordances and Barriers

    No full text
    The future of educational technology has been envisioned to have increasing focus on simulations, game based learning, virtual learning environments and virtual worlds. The technologies aim to provide authentic learning and enable deeper, more complex and contextual understanding for students. To study the impact of virtual learning environments for natural sciences and engineering education, we have designed and implemented a virtual laboratory, LabLife3D, in Second Life. To date we have designed six virtual laboratory exercises in the biological sciences and chemistry and additionally created a system to gather behavioristic data during laboratory simulations for the purpose of learning analytics. This paper presents the design process of laboratory exercises and discusses the content-specific learning goals and outcomes. Additionally, this paper discusses the use of heuristic usability review used to improve the virtual learning environment. Lastly, the results from student and teacher interviews are presented, together with results of the learning analytics study. The discussion also includes student identified affordances and barriers for learning. We conclude that authentic and deep learning is possible within virtual worlds. Furthermore, the results of this study are not only limited to virtual worlds, but could also apply to other areas of digital educational technology
    corecore