54 research outputs found

    FoxP1 marks medium spiny neurons from precursors to maturity and is required for their differentiation

    Get PDF
    Identifying the steps involved in striatal development is important both for understanding the striatum in health and disease, and for generating protocols to differentiate striatal neurons for regenerative medicine. The most prominent neuronal subtype in the adult striatum is the medium spiny projection neuron (MSN), which constitutes more than 85% of all striatal neurons and classically expresses DARPP-32. Through a microarray study of genes expressed in the whole ganglionic eminence (WGE: the developing striatum) in the mouse, we identified the gene encoding the transcription factor Forkhead box protein P1 (FoxP1) as the most highly up-regulated gene, thus providing unbiased evidence for the association of FoxP1 with MSN development. We also describe the expression of FoxP1 in the human fetal brain over equivalent gestational stages. FoxP1 expression persisted through into adulthood in the mouse brain, where it co-localised with all striatal DARPP-32 positive projection neurons and a small population of DARPP-32 negative cells. There was no co-localisation of FoxP1 with any interneuron markers. FoxP1 was detectable in primary fetal striatal cells following dissection, culture, and transplantation into the adult lesioned striatum, demonstrating its utility as an MSN marker for transplantation studies. Furthermore, DARPP-32 expression was absent from FoxP1 knock-out mouse WGE differentiated in vitro, suggesting that FoxP1 is important for the development of DARPP-32-positive MSNs. In summary, we show that FoxP1 labels MSN precursors prior to the expression of DARPP-32 during normal development, and in addition suggest that FoxP1 labels a sub-population of MSNs that are not co-labelled by DARPP-32. We demonstrate the utility of FoxP1 to label MSNs in vitro and following neural transplantation, and show that FoxP1 is required for DARPP-32 positive MSN differentiation in vitro

    Methods for specifying the target difference in a randomised controlled trial : the Difference ELicitation in TriAls (DELTA) systematic review

    Get PDF
    Peer reviewedPublisher PD

    Analysis of the prion protein in primates reveals a new polymorphism in codon 226 (Y226F)

    Full text link
    Bovine spongiform encephalopathy has been epizootic in cows for the last two decades, and most probably causes variant Creutzfeldt-Jakob disease in humans. A thorough understanding of prion pathogenesis relies on suitable animal models. Modeling the transmission of BSE to primates is a crucial public health priority, necessary for determining the tissue distribution of the agent and for devising therapies. Susceptibility of humans to BSE is partly determined by polymorphism within the gene encoding the cellular prion protein, Prnp, a fact that must be taken into account in primate studies. However, no information is available on Prnp polymorphisms in primates. We have sequenced the Prnp open reading frames of 30 non-consanguineous Rhesus macaques. All macaques were homozygous for methionine at codon 129, which is polymorphic in humans and seems to modulate prion susceptibility. However, we identified a novel polymorphism in macaque Prnp, localized on codon 226 (Y226F). A modulatory effect of this polymorphism on the development of prion disease is possible because codon 226 is close to the suggested binding side of the factor X, which has been invoked as a determinant of the prion species barrier

    Visualizing axon guidance phenotypes induced by RNAi in chicken embryos

    No full text

    Genetic, temporal and diurnal influences on L-dopa-induced dyskinesia in the 6-OHDA model

    No full text
    Current treatments for Parkinson's disease rely on a dopamine replacement strategy and are reasonably effective, particularly in the early stages of the disease. However, chronic dopaminergic therapy is limited by the development of a range of side effects, including the onset of abnormal movements (‘dyskinesia’). The neural mechanisms that underlie dyskinesia are far from clear but they have been associated with pulsatile stimulation of dopamine receptors, downstream changes in proteins and genes, and abnormalities in non-dopamine transmitter systems. However, there has been no pathophysiological explanation for the worsening motor symptoms in the afternoon and evening reported by Parkinsonian patients in long-term L-dopa therapy, and no direct relationship has been found with the pharmacokinetics of the drug. Moreover, there continues to be a debate about whether the development of dyskinesias in patients is dependent upon the duration of L-dopa treatment or on the degree of denervation/advanced stage of the disease, both factors that are difficult to resolve experimentally in the human disease. The objective of this study was to characterise, in an animal model, factors that predispose some individuals to develop dyskinesia after a prolonged treatment with L-dopa, whereas others continue to exhibit symptom alleviation without the side effects. We report that none of the parameters studied – genetic variation within and between strains, delay of treatment onset after lesion, or time of day of the drug treatment – were found to influence directly the formation of dyskinesias after L-dopa treatment. We conclude that a complex combination of individual factors are likely to interact to regulate the onset and development of abnormal movements in some animals but not others

    Impact of changes in analytical techniques for the measurement of polychlorinated biphenyls and organochlorine pesticides on temporal trends in herring gull eggs

    No full text
    Changes in analytical approaches during the tenure of monitoring programs for organochlorine (OC) pesticides and polychlorinated biphenyls (PCBs) may affect estimates of temporal trends. We used an in-house reference material to create multiplication factors to adjust the estimates of OC pesticides and PCBs (Aroclor equivalents) in Great Lake herring gull eggs analyzed using electron capture detection (1987-1997) to be more equivalent to estimates using mass spectrometric detection (1998- 2005) as well as accompanying differences in analytical procedures. We examined temporal trends in contaminant concentrations in herring gull eggs using change point regressions, to determine whether significant changes in long-term trends were associated with analytical methodology. The highest frequency of change point occurrences shifted from 1997 (when analytical methodology was altered) to 2003 after data adjustment. The explanatory power (r2) of the regressions was lower after adjustment, although only marginally so (mean r2 difference=0.04). The initial rates of decline before change points in contaminant concentrations were generally slower after the data adjustment, but after any change points the declines were not significantly different. The regression models did not change for 83.3% of the cases. The effects on the interpretation of long-term temporal trends in herring gull eggs, although not negligible, were minor relative to the magnitude of the temporal changes

    Insertional mutagenesis of preneoplastic astrocytes by Moloney murine leukemia virus.

    Full text link
    Retroviral infection can induce transcriptional activation of genes flanking the sites of proviral integration in target cells. Because integration is essentially random, this phenomenon can be exploited for random mutagenesis of the genome, and analysis of integration sites in tumors may identify potential oncogenes. Here we have investigated this strategy in the context of astrocytoma progression. Neuroectodermal explants from astrocytoma-prone GFAP-v-src transgenic mice were infected with the ecotropic Moloney murine leukemia virus (Mo-MuLV). In situ hybridization and FACS analysis indicated that astrocytes from E12.5-13.5 embryos were highly susceptible to retroviral infection and expressed viral RNA and proteins both in vitro and in vivo. In average 80% of neuroectodermal cells were infected in vitro with 9-14 proviral integrations per cell. Virus mobility assays confirmed that Mo-MuLV remained transcriptionally active and replicating in neuroectodermal primary cultures even after 45 days of cultivation. Proviral insertion sites were investigated by inverse long-range PCR. Analysis of a limited number of provirus flanking sequences in clones originated from in vitro infected GFAP-v-src neuroectodermal cells identified loci of possible relevance to tumorigenesis. Therefore, the approach described here might be suitable for acceleration of tumorigenesis in preneoplastic astrocytes. We expect this method to be useful for identifying genes involved in astrocytoma development/progression in animal models

    Prions: pathogenesis and reverse genetics.

    Full text link
    Spongiform encephalopathies are a group of infectious neurodegenerative diseases. The infectious agent that causes transmissible spongiform encephalopathies was termed prion by Stanley Prusiner. The prion hypothesis states that the partially protease-resistant and detergent-insoluble prion protein (PrPsc) is identical with the infectious agent, and lacks any detectable nucleic acids. Since the latter discovery, transgenic mice have contributed many important insights into the field of prion biology. The prion protein (PrPc) is encoded by the Prnp gene, and disruption of Prnp leads to resistance to infection by prions. Introduction of mutant PrPc genes into PrPc-deficient mice was used to investigate structure-activity relationships of the PrPc gene with regard to scrapie susceptibility. Ectopic expression of PrPc in PrPc knockout mice proved a useful tool for the identification of host cells competent for prion replication. Finally, the availability of PrPc knockout and transgenic mice overexpressing PrPc allowed selective reconstitution experiments aimed at expressing PrPc in neurografts or in specific populations of hemato- and lymphopoietic cells. The latter studies helped in elucidating some of the mechanisms of prion spread and disease pathogenesis
    corecore