37 research outputs found

    Comparison of established and emerging biodosimetry assays

    Get PDF
    Rapid biodosimetry tools are required to assist with triage in the case of a large-scale radiation incident. Here, we aimed to determine the dose-assessment accuracy of the well-established dicentric chromosome assay (DCA) and cytokinesis-block micronucleus assay (CBMN) in comparison to the emerging γ-H2AX foci and gene expression assays for triage mode biodosimetry and radiation injury assessment. Coded blood samples exposed to 10 X-ray doses (240 kVp, 1 Gy/min) of up to 6.4 Gy were sent to participants for dose estimation. Report times were documented for each laboratory and assay. The mean absolute difference (MAD) of estimated doses relative to the true doses was calculated. We also merged doses into binary dose categories of clinical relevance and examined accuracy, sensitivity and specificity of the assays. Dose estimates were reported by the first laboratories within 0.3-0.4 days of receipt of samples for the γ-H2AX and gene expression assays compared to 2.4 and 4 days for the DCA and CBMN assays, respectively. Irrespective of the assay we found a 2.5-4-fold variation of interlaboratory accuracy per assay and lowest MAD values for the DCA assay (0.16 Gy) followed by CBMN (0.34 Gy), gene expression (0.34 Gy) and γ-H2AX (0.45 Gy) foci assay. Binary categories of dose estimates could be discriminated with equal efficiency for all assays, but at doses ≥1.5 Gy a 10% decrease in efficiency was observed for the foci assay, which was still comparable to the CBMN assay. In conclusion, the DCA has been confirmed as the gold standard biodosimetry method, but in situations where speed and throughput are more important than ultimate accuracy, the emerging rapid molecular assays have the potential to become useful triage tools

    CD8+ DC, but Not CD8−DC, Isolated from BCG-Infected Mice Reduces Pathological Reactions Induced by Mycobacterial Challenge Infection

    Get PDF
    Tuberculosis is a mycobacterial infection causing worldwide public health problems but the available vaccine is far from ideal. Type-1 T cell immunity has been shown to be critical for host defence against tuberculosis infection, but the role of dendritic cell (DC) subsets in pathogenesis of mycobacterial infection remains unclear.We examined the effectiveness of dendritic cell (DC) subsets in BCG-infected mice in generating immune responses beneficial for pathogen clearance and reduction of pathological reactions in the tissues following challenge infection. Our data showed that only the adoptive transfer of the subset of CD8alpha+ DC isolated from infected mice (iCD8+ DC) generated significant protection, demonstrated by less mycobacterial growth and pathological changes in the lung and liver tissues in iCD8+ DC recipients than sham-treated control mice. The adoptive transfer of the CD8alpha(-)DC from the infected mice (iCD8(-) DC) not only failed to reduce bacterial growth, but enhanced inflammation characterized by diffuse heavy cellular infiltration. Notably, iCD8(-) DC produced significantly higher levels of IL-10 than iCD8+ DC and promoted more Th2 cytokine responses in in vitro DC-T cell co-culture and in vivo adoptive transfer experiments.The data indicate that in vivo BCG-primed CD8+ DC is the dominant DC subset in inducing protective immunity especially for reducing pathological reactions in infected tissues. The finding has implications for the rational improvement of the prophylactic and therapeutic approaches for controlling tuberculosis infection and related diseases

    An Antimicrobial Peptide Regulates Tumor-Associated Macrophage Trafficking via the Chemokine Receptor CCR2, a Model for Tumorigenesis

    Get PDF
    Tumor-associated macrophages (TAMs) constitute a significant part of infiltrating inflammatory cells that are frequently correlated with progression and poor prognosis of a variety of cancers. Tumor cell-produced human β-defensin-3 (hBD-3) has been associated with TAM trafficking in oral cancer; however, its involvement in tumor-related inflammatory processes remains largely unknown., applying a cross-desensitization strategy of CCR2 and its pharmacological inhibitor (RS102895), respectively, was also carried out. outcome and demonstrates the importance of the innate immune system in the development of tumors

    Quantification of low-expressed mRNA using 5' LNA-containing real-time PCR primers.

    No full text
    International audienceReal-time RT-PCR is the most sensitive and accurate method for mRNA quantification. Using specific recombinant DNA as a template, real-time PCR allows accurate quantification within a 7-log range and increased sensitivity below 10 copies. However, when using RT-PCR to quantify mRNA in biological samples, a stochastic off-targeted amplification can occur. Classical adjustments of assay parameters have minimal effects on such amplification. This undesirable amplification appears mostly to be dependent on specific to non-specific target ratio rather than on the absolute quantity of the specific target. This drawback, which decreases assay reliability, mostly appears when quantifying low-expressed transcript in a whole organ. An original primer design using properties of LNA allows to block off-target amplification. 5'-LNA substitution strengthens 5'-hybridization. Consequently on-target hybridization is stabilized and the probability for the off-target to lead to amplification is decreased

    Musclin gene expression is strongly related to fast-glycolytic phenotype.

    No full text
    International audienceMusclin has been described as a muscle-derived secretory peptide, responsive to insulin in vivo, and inducing insulin resistance in vitro. Because muscle fibers display very different metabolic properties and insulin sensitivity, we tested the hypothesis that musclin expression could depend on myofiber type. Musclin mRNA was detected at high level in fast gastrocnemius and plantaris muscles, but only as traces in soleus, a slow-twitch muscle. A single fiber analysis showed that musclin was produced by muscle fibers themselves, almost exclusively type IIb fibers. Slow to fast transition of soleus phenotype after hindlimb suspension increased musclin mRNA levels, whereas fast to slow transition of plantaris phenotype after functional overload decreased musclin mRNA levels. This clearly suggests that musclin transcription is strongly related to fast-glycolytic phenotype. We conclude that musclin is produced by myocytes in a highly fiber-type specific manner and that physiological changes in type IIb MHC lead to coordinated musclin expression

    Hypoxic stimulus alters hypothalamic AMP-activated protein kinase phosphorylation concomitant to hypophagia.

    No full text
    International audienceAcute exposure to hypobaric hypoxia is known to decrease food intake, but the molecular mechanisms of such alteration in feeding behavior remain unknown. We tested the hypothesis that hypothalamic AMP-activated protein kinase (AMPK) phosphorylation is affected by acute exposure to hypobaric hypoxia and thus would be involved in initial anorexia. To address this issue, male rats weighing 255-270 g were either submitted to hypobaric hypoxia (H, equivalent altitude of 5,500 m), maintained under local barometric pressure conditions (N), or pair-fed an equivalent quantity of food to that consumed by H rats (PF), for 6, 24, or 48 h. Daily food intake dropped by 73% during the first day of hypoxia (P<0.01) and remained by 46% lower than in N rats thereafter (P<0.01). Hypoxia per se, as estimated by comparing experimental data between the H and PF groups, increased ob gene transcription and plasma leptin concentration. A transient increase in glucose availability occurred in the H group compared with PF animals (P<0.05). The hypoxic stimulus led to an early and transient decrease in hypothalamic AMPK and acetyl-CoA carboxylase (ACC) phosphorylation, concomitant with hypophagia and associated alterations in nutrients and hormones. An increase in NPY mRNA levels occurred from day 1, similarly in H and PF rats, and thus mainly related to food restriction alone (P<0.05). In conclusion, the present study demonstrates that hypoxia per se inhibited AMPK and ACC phosphorylation in the hypothalamus, concomitant with profound anorexia. A powerful counterregulation occurs rapidly, mediated by NPY and devoted to avoid prolonged anorexia
    corecore