105 research outputs found

    EMT and induction of miR-21 mediate metastasis development in Trp53-deficient tumours

    Get PDF
    Missense mutations in TP53 gene promote metastasis in human tumours. However, little is known about the complete loss of function of p53 in tumour metastasis. Here we show that squamous cell carcinomas generated by the specific ablation of Trp53 gene in mouse epidermis are highly metastatic. Biochemical and genome-wide mRNA and miRNA analyses demonstrated that metastases are associated with the early induction of epithelial-mesenchymal transition (EMT) and deregulated miRNA expression in primary tumours. Increased expression of miR-21 was observed in undifferentiated, prometastatic mouse tumours and in human tumours characterized by p53 mutations and distant metastasis. The augmented expression of miR-21, mediated by active mTOR and Stat3 signalling, conferred increased invasive properties to mouse keratinocytes in vitro and in vivo, whereas blockade of miR-21 in a metastatic spindle cell line inhibits metastasis development. Collectively these data identify novel molecular mechanisms leading to metastasis in vivo originated by p53 loss in epithelia

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Snail1 induces epithelial-to-mesenchymal transition and tumor initiating stem cell characteristics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor initiating stem-like cells (TISCs) are a subset of neoplastic cells that possess distinct survival mechanisms and self-renewal characteristics crucial for tumor maintenance and propagation. The induction of epithelial-mesenchymal-transition (EMT) by TGFβ has been recently linked to the acquisition of TISC characteristics in breast cancer. In HCC, a TISC and EMT phenotype correlates with a worse prognosis. In this work, our aim is to elucidate the underlying mechanism by which cells acquire tumor initiating characteristics after EMT.</p> <p>Methods</p> <p>Gene and protein expression assays and Nanog-promoter luciferase reporter were utilized in epithelial and mesenchymal phenotype liver cancer cell lines. EMT was analyzed with migration/invasion assays. TISC characteristics were analyzed with tumor-sphere self-renewal and chemotherapy resistance assays. <it>In vivo </it>tumor assay was performed to investigate the role of Snail1 in tumor initiation.</p> <p>Conclusion</p> <p>TGFβ induced EMT in epithelial cells through the up-regulation of Snail1 in Smad-dependent signaling. Mesenchymal liver cancer post-EMT demonstrates TISC characteristics such as tumor-sphere formation but are not resistant to cytotoxic therapy. The inhibition of <it>Snail1 </it>in mesenchymal cells results in decreased <it>Nanog </it>promoter luciferase activity and loss of self-renewal characteristics <it>in vitro</it>. These changes confirm the direct role of Snail1 in some TISC traits. <it>In vivo</it>, the down-regulation of <it>Snail1 </it>reduced tumor growth but was not sufficient to eliminate tumor initiation. In summary, TGFβ induces EMT and TISC characteristics through Snail1 and Nanog up-regulation. In mesenchymal cells post-EMT, Snail1 directly regulates <it>Nanog </it>expression, and loss of Snail1 regulates tumor growth without affecting tumor initiation.</p

    Key signalling nodes in mammary gland development and cancer. The Snail1-Twist1 conspiracy in malignant breast cancer progression

    Get PDF
    Breast cancer is the most common cancer among women, and despite significant advances in diagnosing and treating it, metastatic spread of cancer cells results in a high mortality rate. Epithelial-to-mesenchymal transition (EMT) is an embryonic program in which epithelial cells lose their characteristics and gain mesenchymal features. Therefore, EMT might play a very important role during malignant tumour progression. In this review we summarise recent advances in breast cancer research with a particular focus on the transcription factors Snail1 and Twist1. Besides discussing the role of EMT in normal mammary gland development, we describe regulatory mechanisms involving newly discovered upstream regulators and microRNAs, the association of EMT with breast cancer stem cells, and the involvement of the tumour microenvironment in breast cancer progression

    Suppression of TGFβ-Induced Epithelial-Mesenchymal Transition Like Phenotype by a PIAS1 Regulated Sumoylation Pathway in NMuMG Epithelial Cells

    Get PDF
    Epithelial-mesenchymal-transition (EMT) is a fundamental cellular process that is critical for normal development and tumor metastasis. The transforming growth factor beta (TGFβ) is a potent inducer of EMT like effects, but the mechanisms that regulate TGFβ-induced EMT remain incompletely understood. Using the widely employed NMuMG mammary epithelial cells as a model to study TGFβ-induced EMT, we report that TGFβ downregulates the levels of the SUMO E3 ligase PIAS1 in cells undergoing EMT. Gain and loss of function analyses indicate that PIAS1 acts in a SUMO ligase dependent manner to suppress the ability of TGFβ to induce EMT in these cells. We also find that TGFβ inhibits sumoylation of the PIAS1 substrate SnoN, a transcriptional regulator that antagonizes TGFβ-induced EMT. Accordingly, loss of function mutations of SnoN sumoylation impair the ability of SnoN to inhibit TGFβ-induced EMT in NMuMG cells. Collectively, our findings suggest that PIAS1 is a novel negative regulator of EMT and reveal that inhibition of the PIAS1-SnoN sumoylation pathway represents a key mechanism by which TGFβ induces EMT, with important implications in normal development and tumor metastasis

    Claudins in lung diseases

    Get PDF
    Tight junctions are the most apically localized part of the epithelial junctional complex. They regulate the permeability and polarity of cell layers and create compartments in cell membranes. Claudins are structural molecules of tight junctions. There are 27 claudins known, and expression of different claudins is responsible for changes in the electrolyte and solute permeability in cells layers. Studies have shown that claudins and tight junctions also protect multicellular organisms from infections and that some infectious agents may use claudins as targets to invade and weaken the host's defense. In neoplastic diseases, claudin expression may be up- or downregulated. Since their expression is associated with specific tumor types or with specific locations of tumors to a certain degree, they can, in a restricted sense, also be used as tumor markers. However, the regulation of claudin expression is complex involving growth factors and integrins, protein kinases, proto-oncogens and transcription factors. In this review, the significance of claudins is discussed in lung disease and development

    Rac and Rho GTPases in cancer cell motility control

    Get PDF
    Rho GTPases represent a family of small GTP-binding proteins involved in cell cytoskeleton organization, migration, transcription, and proliferation. A common theme of these processes is a dynamic reorganization of actin cytoskeleton which has now emerged as a major switch control mainly carried out by Rho and Rac GTPase subfamilies, playing an acknowledged role in adaptation of cell motility to the microenvironment. Cells exhibit three distinct modes of migration when invading the 3 D environment. Collective motility leads to movement of cohorts of cells which maintain the adherens junctions and move by photolytic degradation of matrix barriers. Single cell mesenchymal-type movement is characterized by an elongated cellular shape and again requires extracellular proteolysis and integrin engagement. In addition it depends on Rac1-mediated cell polarization and lamellipodia formation. Conversely, in amoeboid movement cells have a rounded morphology, the movement is independent from proteases but requires high Rho GTPase to drive elevated levels of actomyosin contractility. These two modes of cell movement are interconvertible and several moving cells, including tumor cells, show an high degree of plasticity in motility styles shifting ad hoc between mesenchymal or amoeboid movements. This review will focus on the role of Rac and Rho small GTPases in cell motility and in the complex relationship driving the reciprocal control between Rac and Rho granting for the opportunistic motile behaviour of aggressive cancer cells. In addition we analyse the role of these GTPases in cancer progression and metastatic dissemination

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points
    corecore