189 research outputs found

    Elementen verbinden

    Get PDF
    Conservation Biology - ol

    Multiscale Coupling Strategy for Nano Ecotoxicology Prediction

    Get PDF
    Conservation Biolog

    Development of a quasi-quantitative structure-activity relationship model for prediction of the immobilization response of Daphnia magna exposed to metal-based nanomaterials

    Get PDF
    The conventional Hill equation model is suitable to fit dose-response data obtained from performing (eco)toxicity assays. Models based on quasi-quantitative structure-activity relationships (QSARs) to estimate the Hill coefficient ( n H ) nH){n}_{{\rm{H}}}) were developed with the aim of predicting the response of the invertebrate species Daphnia magna to exposure to metal-based nanomaterials. Descriptors representing the pristine properties of nanoparticles and media conditions were coded to a quasi-simplified molecular input line entry system and correlated to experimentally derived values of n H nH{n}_{{\rm{H}}}. Monte Carlo optimization was used to model the set of n H nH{n}_{{\rm{H}}} values, and the model was trained on the basis of reported dose-response relationships of 60 data sets (n = 367 individual response observations) of 11 metal-based nanomaterials as obtained from 20 literature reports. The model simulates the training data well, with only 2.3% deviation between experimental and modeled response data. The technique was employed to predict the dose-response relationships of 15 additional data sets (n = 72 individual observations) not included in model development of seven metal-based nanomaterials from 10 literature reports, with an average error of 3.5%. Combining the model output with either the median effective concentration value or any other known effect level as obtained from experimental data allows the prediction of full dose-response curves of D. magna immobilization. This model is an accurate screening tool that allows the determination of the shape and slope of dose-response curves, thereby greatly reducing experimental effort in case of novel advanced metal-based nanomaterials or the prediction of responses in altered exposure media. This screening model is compliant with the 3Rs (replacement, reduction, and refinement) principle, which is embraced by the scientific and regulatory communities dealing with nano-safety. Environ Toxicol Chem 2022;00:1-12. (c) 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.Environmental Biolog

    Exploring the potential of in silico machine learning tools for the prediction of acute Daphnia magna nanotoxicity

    Get PDF
    Engineered nanomaterials (ENMs) are ubiquitous nowadays, finding their application in different fields of technology and various consumer products. Virtually any chemical can be manipulated at the nano-scale to display unique characteristics which makes them appealing over larger sized materials. As the production and development of ENMs have increased considerably over time, so too have concerns regarding their adverse effects and environmental impacts. It is unfeasible to assess the risks associated with every single ENM through in vivo or in vitro experiments. As an alternative, in silico methods can be employed to evaluate ENMs. To perform such an evaluation, we collected data from databases and literature to create classification models based on machine learning algorithms in accordance with the principles laid out by the OECD for the creation of QSARs. The aim was to investigate the performance of various machine learning algorithms towards predicting a well-defined in vivo toxicity endpoint (Daphnia magna immobilization) and also to identify which features are important drivers of D. magna in vivo nanotoxicity. Results indicated highly comparable model performance between all algorithms and predictive performance exceeding ∼0.7 for all evaluated metrics (e.g. accuracy, sensitivity, specificity, balanced accuracy, Matthews correlation coefficient, area under the receiver operator characteristic curve). The random forest, artificial neural network, and k-nearest neighbor models displayed the best performance but this was only marginally better compared to the other models. Furthermore, the variable importance analysis indicated that molecular descriptors and physicochemical properties were generally important within most models, while features related to the exposure conditions produced slightly conflicting results. Lastly, results also indicate that reliable and robust machine learning models can be generated for in vivo endpoints with smaller datasets. Horizon 2020(H2020)814426Environmental Biolog

    Correlation analysis of single- and multigenerational endpoints in Daphnia magna toxicity tests: a case-study using TiO2 nanoparticles

    Get PDF
    Multigenerational toxicity tests provide more sensitive measures of population-level effects than conventional single-generation tests. Particularly for stressors which exhibit slow uptake rates (e.g. nanomaterials), multigenerational tests may also provide a more realistic representation of natural exposure scenarios. To date, the inherently high costs and labor intensity have however limited the use of multigenerational toxicity tests and thereby their incorporation in environmental risk assessment. The aim of the present study was therefore to determine to what extent short(er) term endpoints which are conventionally measured in Daphnia magna toxicity tests hold predictive capacity towards reproduction measured over longer timescales, including multiple generations. To assess this, a case-study was performed in which effects of TiO2 nanoparticles (0, 0.02, 0.2, 2 and 5 mg L−1) on D. magna life-history traits were assessed over five generations. Additionally, it was determined whether offspring derived from exposed parents exhibited sustained adverse effects when rearing them in clean (non-exposed) media after each generation of exposure. The present study showed that although various life-history traits correlate with the total reproductive output in the same- and subsequent generation under non-exposed conditions, these correlations were decoupled in presence of exposure to nTiO2. In addition, it was found that nTiO2 can induce adverse effects on population relevant endpoints at concentrations 1–2 orders of magnitude lower than previously found (i.e. 0.02 mg L−1), and close to the range of concentrations occurring in natural freshwater ecosystems.Horizon 2020(H2020)760813Environmental Biolog
    corecore