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nanoscopic, mesoscopic, and macroscopic scales (Figure 1)
that need to be understood and described in model
descriptors. The quantum aspects of chemical reactions that
can induce an adverse effect may be central for predicting the
toxicity of NPs. Currently, on the microscopic scale, quantum
mechanics methods have become the core of simulation
techniques. Quantum chemical calculations can also be used to
obtain descriptors such as total energy, orbital energy, and
thermodynamic parameters from nanocrystal lattices or
nanoclusters. The enthalpy of formation of a gaseous cation
as an index of the chemical stability of metal oxide NPs has
been successfully applied to predict the cytotoxicity of the
NPs." Compared to metal oxide NPs, prediction toxicity
models for carbon-based NPs based on quantum chemistry-
based descriptors are currently relatively scarce. A reason for
this lack of research may be related to the diversity of carbon
nanostructures with different dimensionalities (0D, 1D, 2D,
3D) and hybridization states (sp, sp2, sp3) of constituent
carbon atoms.

Due to their large specific surface area, by definition NPs
hold a strong tendency of agglomeration to lower their free
energy. Many interaction forces exist between nanocarbons,
including van der Waal’s attraction and 7—n stacking, with
occasional electrostatic interaction, hydrogen bonding, and
hydrophobic interaction. These interaction forces have
provided essential opportunities for spontaneous assembly.*
Thus, NPs have a strong tendency of aggregation/agglomer-
ation, which influences their toxic effects. We therefore suggest
to predict the toxicity of nanocarbons using quantum chemical
descriptors (e.g., potential energy) to describe the interaction
forces.

In addition, many nanocarbons are photosensitized and can
produce phototoxicity to aquatic organisms. The gap between
the highest occupied molecular orbital and the lowest
unoccupied molecular orbital was proposed as a qualitative
indication of the potential photoinduced toxicity of polycyclic
aromatic hydrocarbons (PAHs) to aquatic organisms.5 PAHs
are generally regarded as precursors of carbon-based nanoma-
terials. We therefore suggest that nano-QSA(.)R models
incorporating orbital energy descriptors can be applied to
predict the aquatic phototoxicity of nanocarbons.

On the nanoscopic scale (Figure 1), structural descriptors
have been used to describe the three-dimensional size, shape,
and surface properties of NPs. Hazard assessments of NPs

he number of toxicological studies characterizing hazards

posed by manufactured nanoparticles (NPs) has
increased in recent years. Identification of both the mode of
action as well as the mechanism of toxic action of NPs have
become areas of significant concern. A controversy is centered
on the notion on which intrinsic chemical and physical
characteristic of NPs considerably contributes to adverse
effects. In order to reduce the need for expensive and time-
consuming experimental testing, predictive models are being
developed to investigate the relationships between the intrinsic
properties of NPs and their biological impacts." The
calculation of descriptors reflecting intrinsic NP properties
has been complicated by the structural complexity and the
dynamic behavior of NPs.” In particular, there is a lack of
studies comparing the environmental toxicity of NPs to human
toxicity results. Issues concerning quantum chemical properties
and aqueous dispersion stability can have important con-
sequences for quantitative nanostructure—activity (ecotoxicity)
relationships (termed as nano-QSA,)Rs). It is therefore
important to develop suitable descriptors for predicting the
aquatic toxicity of NPs.’

We propose that a multiscale analysis could comprehensively
strengthen the understanding of toxicity mechanisms and
could efficiently couple multiscale descriptors to forecast
apparent toxicity of NPs to aquatic organisms. The multiscale Received: May 30, 2018
system refers to the different scales microscopic (atomic), Published: June 27, 2018
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Figure 1. Three-dimensional construction of multiscale coupling strategy for nano ecotoxicology prediction

currently focus on the effects that NP-structural descriptors
have on the environmental behavior and toxicity of the
particles. Due to particle surface modifications (e.g., coating)
and various environmental factors (e.g., pH, ionic strength, and
dissolved organic carbon), aggregation/ agglomeration and the
dispersion state of NPs can be altered.” In view of specific
interactions between NPs and organisms, the bioavailable
fraction of NPs is likely to be proportional to the concentration
of “free” NPs, with aggregates/agglomerates functioning as a
source for “free” particles. Apart from increasing our
understanding of biological response interpretations, the
stability of NPs in an aqueous medium is also an important
factor determining the aquatic toxicity of NPs. Moreover, it is
the interplay of multiple structural descriptors, such as size and
zeta potential, that allows NPs to cause toxic effects. Issues in
aquatic toxicology of NPs therefore require a transfer from the
nanoscopic scale to the mesoscopic scale (Figure 1). To
address this conversion, mesoscopic simulation based on
classical Derjaguin—Landau—Verwey—Overbeek (DLVO)
theory or extended DLVO (XDLVO) theory mechanism can
be applied. In order to describe NP aggregation/agglomeration
and dispersion in aqueous suspensions, DLVO or XDLVO
theory combines the structural descriptors of NPs with typical
environmental factors and surface modification factors. The
primary energy barrier (indicating NP stability) of particles
derived from the interaction energy profiles based on DLVO or
XDLVO theory can be used as a mesoscopic descriptor which
can be implemented for assessing the aquatic toxicity of NPs.

On the macroscopic scale (Figure 1), the apparent toxicity
of NPs to aquatic organisms is usually expressed as the
concentration of a compound provoking x % (e.g, x = 1, S, 10,
50) effect (EC,). The apparent EC, value as an end point for
aquatic toxicity is a well-suited and relatively easily accessible
end point for development of nano-QSA,,)Rs.

With this understanding, we synthesized the issues relating
to the prediction of aquatic toxicity of NPs across three
dimensions, and we propose the following recommendations
for further scientific actions: (1) Quantum chemical
descriptors obtained on the microscopic (atomic) scale should
be an integral part of nano-QSA,,)Rs. Availability of a larger
number of quantum chemical descriptors that are indicative of
the toxicity of NPs may mark the development of quantum
nanotoxicology; (2) We need to turn the nanoscopic insights
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toward the prediction of aquatic toxicity to the mesoscopic
insights, as the interplay of multiple structural descriptors
favors the mesoscopic simulation; (3) The primary energy
barrier as a mesoscopic descriptor derived from the colloidal
theory should be integrated into future development of nano-
QSA(cc0)Rs, as aqueous dispersion stability associated with NP-
NP interactions plays a pivotal role in explaining toxicity.
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