40 research outputs found

    Nonlinear dynamics of ionization stabilization of atoms in intense laser fields

    Full text link
    We revisit the stabilization of ionization of atoms subjected to a superintense laser pulse using nonlinear dynamics. We provide an explanation for the lack of complete ionization at high intensity and for the decrease of the ionization probability as intensity is increased. We investigate the role of each part of the laser pulse (ramp-up, plateau, ramp-down) in this process. We emphasize the role of the choice for the ionization criterion, energy versus distance criterion

    Anomalous elastic softening of SmRu_{4}P_{12} under high pressure

    Get PDF
    The filled skutterudite compound SmRu_4P_{12} undergoes a complex evolution from a paramagnetic metal (phase I) to a probable multipolar ordering insulator (phase II) at T_{MI} = 16.5 K, then to a magnetically ordered phase (phase III) at T_{N} = 14 K. Elastic properties under hydrostatic pressures were investigated to study the nature of the ordering phases. We found that distinct elastic softening above T_{MI} is induced by pressure, giving evidence of quadrupole degeneracy of the ground state in the crystalline electric field. It also suggests that quadrupole moment may be one of the order parameters below T_{MI} under pressure. Strangely, the largest degree of softening is found in the transverse elastic constant C_{T} at around 0.5-0.6 GPa, presumably having relevancy to the competing and very different Gruneisen parameters \Omega of T_{MI} and T_{N}. Interplay between the two phase transitions is also verified by the rapid increase of T_{MI} under pressure with a considerably large \Omega of 9. Our results can be understood on the basis of the proposed octupole scenario for SmRu_4P_{12}.Comment: 7 pages, 7 figure

    Ultrafast consolidation of bulk nanocrystalline titanium alloy through ultrasonic vibration

    Get PDF
    Nanocrystalline (NC) materials have fascinating physical and chemical properties, thereby they exhibit great prospects in academic and industrial fields. Highly efficient approaches for fabricating bulk NC materials have been pursued extensively over past decades. However, the instability of nanograin, which is sensitive to processing parameters (such as temperature and time), is always a challenging issue to be solved and remains to date. Herein, we report an ultrafast nanostructuring strategy, namely ultrasonic vibration consolidation (UVC). The strategy utilizes internal friction heat, generated from mutually rubbing between Ti-based metallic glass powders, to heat the glassy alloy rapidly through its supercooled liquid regime, and accelerated viscous flow bonds the powders together. Consequently, bulk NC-Ti alloy with grain size ranging from 10 to 70 nm and nearly full density is consolidated in 2 seconds. The novel consolidation approach proposed here offers a general and highly efficient pathway for manufacturing bulk nanomaterials

    Effect of Subcutaneous Casirivimab and Imdevimab Antibody Combination vs Placebo on Development of Symptomatic COVID-19 in Early Asymptomatic SARS-CoV-2 Infection: A Randomized Clinical Trial

    Get PDF
    Importance: Easy-to-administer anti-SARS-CoV-2 treatments may be used to prevent progression from asymptomatic infection to symptomatic disease and to reduce viral carriage. Objective: To evaluate the effect of combination subcutaneous casirivimab and imdevimab on progression from early asymptomatic SARS-CoV-2 infection to symptomatic COVID-19. Design, Setting, and Participants: Randomized, double-blind, placebo-controlled, phase 3 trial of close household contacts of a SARS-CoV-2-infected index case at 112 sites in the US, Romania, and Moldova enrolled July 13, 2020-January 28, 2021; follow-up ended March 11, 2021. Asymptomatic individuals (aged ≥12 years) were eligible if identified within 96 hours of index case positive test collection. Results from 314 individuals positive on SARS-CoV-2 reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) testing are reported. Interventions: Individuals were randomized 1:1 to receive 1 dose of subcutaneous casirivimab and imdevimab, 1200 mg (600 mg of each; n = 158), or placebo (n = 156). Main Outcomes and Measures: The primary end point was the proportion of seronegative participants who developed symptomatic COVID-19 during the 28-day efficacy assessment period. The key secondary efficacy end points were the number of weeks of symptomatic SARS-CoV-2 infection and the number of weeks of high viral load (>4 log10copies/mL). Results: Among 314 randomized participants (mean age, 41.0 years; 51.6% women), 310 (99.7%) completed the efficacy assessment period; 204 were asymptomatic and seronegative at baseline and included in the primary efficacy analysis. Subcutaneous casirivimab and imdevimab, 1200 mg, significantly prevented progression to symptomatic disease (29/100 [29.0%] vs 44/104 [42.3%] with placebo; odds ratio, 0.54 [95% CI, 0.30-0.97]; P =.04; absolute risk difference, -13.3% [95% CI, -26.3% to -0.3%]). Casirivimab and imdevimab reduced the number of symptomatic weeks per 1000 participants (895.7 weeks vs 1637.4 weeks with placebo; P =.03), an approximately 5.6-day reduction in symptom duration per symptomatic participant. Treatment with casirivimab and imdevimab also reduced the number of high viral load weeks per 1000 participants (489.8 weeks vs 811.9 weeks with placebo; P =.001). The proportion of participants receiving casirivimab and imdevimab who had 1 or more treatment-emergent adverse event was 33.5% vs 48.1% for placebo, including events related (25.8% vs 39.7%) or not related (11.0% vs 16.0%) to COVID-19. Conclusions and Relevance: Among asymptomatic SARS-CoV-2 RT-qPCR-positive individuals living with an infected household contact, treatment with subcutaneous casirivimab and imdevimab antibody combination vs placebo significantly reduced the incidence of symptomatic COVID-19 over 28 days. Trial Registration: ClinicalTrials.gov Identifier: NCT04452318

    Coexpression networks identify brain region-specific enhancer RNAs in the human brain

    No full text
    Despite major progress in identifying enhancer regions on a genome-wide scale, the majority of available data are limited to model organisms and human transformed cell lines. We have identified a robust set of enhancer RNAs (eRNAs) expressed in the human brain and constructed networks assessing eRNA-gene coexpression interactions across human fetal brain and multiple adult brain regions. Our data identify brain region-specific eRNAs and show that enhancer regions expressing eRNAs are enriched for genetic variants associated with autism spectrum disorders
    corecore