929 research outputs found

    Responsive aqueous foams stabilized by silica nanoparticles hydrophobized in situ with a conventional surfactant

    Get PDF
    In the recent past, switchable surfactants and switchable/stimulus-responsive surface-active particles have been of great interest. Both can be transformed between surface-active and surface-inactive states via several triggers, making them recoverable and reusable afterward. However, the synthesis of these materials is complicated. In this paper we report a facile protocol to obtain responsive surface-active nanoparticles and their use in preparing responsive particle-stabilized foams. Hydrophilic silica nanoparticles are initially hydrophobized in situ with a trace amount of a conventional cationic surfactant in water, rendering them surface-active such that they stabilize aqueous foams. The latter can then be destabilized by adding equal moles of an anionic surfactant, and restabilized by adding another trace amount of the cationic surfactant followed by shaking. The stabilization–destabilization of the foams can be cycled many times at room temperature. The trigger is the stronger electrostatic interaction between the oppositely charged surfactants than that between the cationic surfactant and the negatively charged particles. The added anionic surfactant tends to form ion pairs with the cationic surfactant, leading to desorption of the latter from particle surfaces and dehydrophobization of the particles. Upon addition of another trace amount of cationic surfactant, the particles are rehydrophobized in situ and can then stabilize foams again. This principle makes it possible to obtain responsive surface-active particles using commercially available inorganic nanoparticles and conventional surfactants

    CO₂/N₂ triggered switchable Pickering emulsions stabilized by alumina nanoparticles in combination with a conventional anionic surfactant

    Get PDF
    Stable n-decane-in-water Pickering emulsions were prepared using positively charged alumina nanoparticles in combination with a trace amount of the anionic surfactant sodium dodecyl sulfate (SDS) as stabilizer. Particles were hydrophobized in situ by adsorption of surfactant enhancing their surface activity. Emulsions can be readily demulsified by addition of an equal amount of a switchable surfactant, N'-dodecyl-N,N-dimethylacetamidine (DDAA), which can be transformed between a surface-active amidinium/cationic form and a surface-inactive amidine/neutral form by bubbling CO₂ or N₂, respectively. Following addition of cationic DDAA which prefers to form ion pairs with SDS, desorption of SDS from particles surfaces occurs and alumina particles are rendered hydrophilic resulting in demulsification of the emulsion. However, by bubbling N₂ into the demulsified mixture, DDAA molecules are converted to the amidine/neutral form leading to collapse of the ion pairs and re-establishment of the in situ hydrophobization of particles. Stable Pickering emulsions can be prepared again following homogenization. This simple demulsification/re-stabilization cycle can be repeated several times. Experimental evidence including measurement of the adsorption isotherm, zeta potentials, extent of particle adsorption at droplets interfaces in emulsions and microscopy is given to support the postulated mechanisms

    Generation of Ultra-intense Gamma-ray Train by QED Harmonics

    Full text link
    When laser intensity exceeds 10^22W/cm^2, photons with energy above MeV can be generated from high-order harmonics process in the laser-plasma interaction. We find that under such laser intensity, QED effect plays a dominating role in the radiation pattern. Contrast to the gas and relativistic HHG processes, both the occurrence and energy of gamma-ray emission produced by QED harmonics are random and QED harmonics are usually not coherent, while the property of high intensity and ultra-short duration is conserved. Our simulation shows that the period of gamma-ray train is half of the laser period and the peak intensity is 1.4e22W/cm^2. This new harmonic production with QED effects are crucial to light-matter interaction in strong field and can be verified in experiments by 10PW laser facilities in the near future.Comment: 12 pages, 4 figure

    When autophagy meets placenta development and pregnancy complications

    Get PDF
    Autophagy is a common biological phenomenon in eukaryotes that has evolved and reshaped to maintain cellular homeostasis. Under the pressure of starvation, hypoxia, and immune damage, autophagy provides energy and nutrients to cells, which benefits cell survival. In mammals, autophagy is an early embryonic nutrient supply system involved in early embryonic development, implantation, and pregnancy maintenance. Recent studies have found that autophagy imbalance in placental tissue plays a key role in the occurrence and development of pregnancy complications, such as gestational hypertension, gestational obesity, premature birth, miscarriage, and intrauterine growth restriction. This mini-review summarizes the molecular mechanism of autophagy regulation, the autophagy pathways, and related factors involved in placental tissue and comprehensively describes the role of autophagy in pregnancy complications

    Widely adaptable oil-in-water gel emulsions stabilized by an amphiphilic hydrogelator derived from dehydroabietic acid

    Get PDF
    A surfactant, R-6-AO, derived from dehydroabietic acid has been synthesized. It behaves as a highly efficient low-molecular-weight hydrogelator with an extremely low critical gelation concentration (CGC) of 0.18 wt % (4 mm). R-6-AO not only stabilizes oil-in-water (O/W) emulsions at concentrations above its critical micelle concentration (cmc) of 0.6 mm, but also forms gel emulsions at concentrations beyond the CGC with the oil volume fraction freely adjustable between 2 % and 95 %. Cryo-TEM images reveal that R-6-AO molecules self-assemble into left-handed helical fibers with cross-sectional diameters of about 10 nm in pure water, which can be turned to very stable hydrogels at concentrations above the CGC. The gel emulsions stabilized by R-6-AO can be prepared with different oils (n-dodecane, n-decane, n-octane, soybean oil, olive oil, tricaprylin) owing to the tricyclic diterpene hydrophobic structure in their molecules that enables them to adopt a unique arrangement in the fibers

    Thermoresponsive Pickering emulsions stabilized by silica nanoparticles in combination with alkyl polyoxyethylene ether nonionic surfactant

    Get PDF
    We put forward a simple protocol to prepare thermo-responsive Pickering emulsions. Using hydrophilic silica nanoparticles in combination with a low concentration of alkyl polyoxyethylene monododecyl ether (C12En) nonionic surfactant as emulsifier, oil-in-water (o/w) emulsions can be obtained which are stable at room temperature but demulsified at elevated temperature. The stabilization can be restored once the separated mixture is cooled and re-homogenized, and this stabilization-destabilization behavior can be cycled many times. It is found that the adsorption of nonionic surfactant at the silica nanoparticle-water interface via hydrogen bonding between the oxygen atoms in the polyoxyethylene headgroup and the SiOH groups on particle surfaces at low temperature is responsible for the in situ hydrophobization of the particles rendering them surface-active. De-hydrophobization can be achieved at elevated temperature due to weakening or loss of this hydrogen bonding. The time required for demulsification decreases with increasing temperature and the temperature interval between stabilization and destabilization of the emulsions is affected by the surfactant headgroup length. Experimental evidence including microscopy, adsorption isotherms and three-phase contact angles is provided to support the mechanism

    Old Age Protection in the Context of Rural Development

    Get PDF
    This study examines the potential of rural communities for generating and allocating resources for rural old age support in the context of decreasing family resources and inadequate state provision. In?depth interviews with elderly people, their families, community leaders and government officials of three villages, respectively located in three provinces provide us with clear evidence on existing local institutional arrangements for rural old age support and the role of both government and community in organising such programmes. They confirm the potential of rural communities to generate and distribute resources for old age support, offering community opportunities for social inclusion through fair flows of resources to promote social harmony and stability, and accelerating economic growth. The findings of the study imply that there is a need for policymakers to link the state effort for old age protection to rural community development, and encourage grassroots efforts in old age support

    Pyrimido[4,5‐ d ]pyrimidin‐4(1 H )‐one Derivatives as Selective Inhibitors of EGFR Threonine 790 to Methionine 790 (T790M) Mutants

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/99681/1/8387_ftp.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/99681/2/anie_201302313_sm_miscellaneous_information.pd
    • 

    corecore