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Abstract 

We put forward a simple protocol to prepare thermo-responsive Pickering emulsions. Using 

hydrophilic silica nanoparticles in combination with a low concentration of alkyl 

polyoxyethylene monododecyl ether (C12En) nonionic surfactant as emulsifier, oil-in-water (o/w) 

emulsions can be obtained which are stable at room temperature but demulsified at elevated 

temperature. The stabilization can be restored once the separated mixture is cooled and 

re-homogenized, and this stabilization-destabilization behavior can be cycled many times. It is 

found that the adsorption of nonionic surfactant at the silica nanoparticle-water interface via 

hydrogen bonding between the oxygen atoms in the polyoxyethylene headgroup and the SiOH 

groups on particle surfaces at low temperature is responsible for the in situ hydrophobization of 

the particles rendering them surface-active. De-hydrophobization can be achieved at elevated 

temperature due to weakening or loss of this hydrogen bonding. The time required for 

demulsification decreases with increasing temperature and the temperature interval between 

stabilization and destabilization of the emulsions is affected by the surfactant headgroup length. 

Experimental evidence including microscopy, adsorption isotherms and three-phase contact 

angles is provided to support the mechanism.      
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Introduction 

It is well known that conventional emulsions stabilized by surfactants or polymers [1] are 

thermodynamically unstable and may not be suitable for long time storage. Those stabilized by 

surface-active colloid particles however, known as Pickering emulsions, may be kinetically stable 

due to irreversible adsorption of the colloid particles at the oil-water interface which provides a 

physical barrier to the coalescence of droplets [2-4]. On the other hand, however, demulsification 

of Pickering emulsions is relatively difficult [5]. This is necessary in some technical or industrial 

applications of emulsions, especially when temporary stabilization of emulsions is required such 

as in polymerization, transport of oil products and fossil fuel production. [6] Stimuli-responsive 

Pickering emulsions which can be transformed between stable and unstable by certain triggers are 

therefore of interest and attention has been paid to them in recent years [6, 7].  

The key to prepare a stimulus-responsive Pickering emulsion is to develop colloid particles 

which can be transformed between surface-active and surface-inactive in response to a given 

stimulus [6, 7]. Much progress has been made in recent years in this context as reviewed by Tang 

et al.[7], where individual triggers including pH, [8-13] temperature, [14-20] redox, [21] light irradiation, 

[22, 23] CO2/N2 addition, [24-28] magnetic field [29, 30] and dual triggers such as pH-temperature, [31-34] 

light-temperature [35] and magnetic field intensity-temperature [36, 37] have been reported. Among 

these triggers both light irradiation and CO2/N2 triggers are environmentally benign, but the 

efficiency of demulsification via light irradiation is easily affected by the turbidity of the 

emulsion [6, 7], and the CO2/N2 trigger involves both complicated particle synthesis and rigorous 

conditions such as temperatures far below or far beyond room temperature [6]. The pH trigger is 

very convenient in operation. However, the addition of acids and bases and the resulting 

neutralization products contaminate the systems. A similar drawback is suffered by a redox 



 4 

trigger. On the other hand the temperature trigger, which avoids the addition of chemicals and is 

easily achievable, is still attractive when the energy cost is not a problem.  

Until now, the temperature- or thermo-triggered colloid particles for preparing 

stimuli-responsive Pickering emulsions are mostly polymeric particles, [14-16, 31, 32, 38] hybrid 

particles where an organic [17-19, 33, 34, 39] or inorganic [20, 36, 40, 41] core was grafted with functional 

polymers as well as natural biopolymer particles.[42] However, the synthesis of these particles is 

complicated and some of the methods are not suitable for commercial production of large 

amounts. It has been reported that charged inorganic nanoparticles which are originally 

surface-inactive at an oil-water interface can be hydrophobized in situ to become surface-active 

[43-45] by adsorbing oppositely charged surfactant in water. When a switchable surfactant is used, 

the trigger of the surfactant can be transferred to particles to give switchable surface-active 

nanoparticles, [6] which can be employed for preparing stimuli-responsive Pickering emulsions 

and foams [6, 46]. Here the hydrophilic particles adsorb oppositely charged surfactant via 

electrostatic interaction with the surfactant forming a monolayer at the particle-water interface 

with its hydrophobic tail towards water thus enhancing the hydrophobicity of the particles. Once 

the electrostatic interaction is removed, e.g. by transforming a switchable surfactant from its 

charged form to its uncharged form [6] or by formation of an ion pair between conventional ionic 

surfactants [47], the in situ hydrophobization can be reversed. In this protocol, the surfactant 

concentration required is very low, usually  10% of the critical micelle concentration (cmc), 

which is economically beneficial for practical applications. In this paper, we report a protocol for 

obtaining thermo-responsive silica nanoparticles used to prepare thermo-responsive Pickering 

oil-in-water emulsions, where a nonionic surfactant is chosen to replace the cationic one. We find 

that at low temperature the nonionic surfactant adsorbs at the silica particle-water interface with 
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head-on configuration via hydrogen-bonding between the oxygen atoms in the polyoxyethylene 

(POE) headgroup and the SiOH groups on particle surfaces to render particles surface-active. At 

elevated temperature, the hydrogen-bonding is weakened sufficiently reverting the silica 

nanoparticles to their original bare and surface-inactive state inducing demulsification. The effect 

of the POE length is examined and microscopy, adsorption and relevant contact angle data are 

provided for elucidating the mechanism involved.  

 

Experimental 

Materials 

Silica nanoparticles (HL-200, 99.8%) with a primary particle diameter of 20 nm and a BET 

surface area of 200  20 m2/g were provided by Wuxi Jinding Longhua Chemical Co., China. A 

SEM image and a TEM image of the particles are shown in Figure S1. Tetraethylene glycol 

monododecyl ether (C12E4, > 98%), pentaethylene glycol monododecyl ether (C12E5, > 98%) and 

decaethylene glycol monododecyl ether (C12E10 > 98%) were purchased from Sigma and used as 

received. Diethylene glycol monododecyl ether (C12E2, > 97%) and triethylene glycol 

monododecyl ether (C12E3,  > 97%) were synthesized in-house [48] using bromododecane (AR, 

98%) via the Williamson reaction with diethylene glycol and triethylene glycol (AR grade) 

respectively. The 1HNMR spectra of the two surfactants are shown in Figure S2. Dodecane (> 

98%) and toluene (99.5%) were purchased from Aladdin and Sinopharm Chemical Reagent Co. 

respectively and were columned three times through neutral alumina before use. All other 

chemicals were analytically pure and purchased from Sinopharm Chemical Reagent Co. 

Ultrapure water with a resistance of 18.2 MΩ cm and a pH of 6.1 at 25 C was produced from a 

Simplicity Pure Water System (Merck Millipore, Shanghai). All chemicals were used as received 
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unless specified otherwise. 

  

Preparation and characterization of emulsions  

Silica powder was weighed into a glass vessel of dimensions 6.5 cm (h) by 2.5 cm (d) (25 

mL) followed by adding pure water or an aqueous solution of a nonionic surfactant. The particles 

were then dispersed using an ultrasound probe (JYD-650, Shanghai) of tip diameter 0.6 cm 

operating at an output of 50 W for 1 min. Then, an equal volume (7 mL) of aqueous phase 

containing either nonionic surfactant or silica nanoparticles or both and oil phase (toluene or 

dodecane) were placed in a glass vessel (25 mL) followed by homogenization at 11,000 rpm for 2 

min using an ultra-turrax homogenizer (IKA T18 basic, S18N-10G head) at room temperature (22 

± 2 C). The concentrations of particle and surfactant are expressed as weight percentage (wt.%) 

relative to the aqueous phase and moles per litre relative to the aqueous or oil phase, respectively. 

The emulsion type was identified using the drop test, [44] and emulsion stability was evaluated 

from photographs. Micrographs of both fresh and dried emulsions at different times were 

recorded using a VHX-1000 microscope system (Keyence Co.). 

 

Demulsification/emulsification cycling of emulsions  

Stable emulsions containing 0.5 wt.% silica nanoparticles in combination with a low 

concentration of nonionic surfactant were demulsified by heating with gentle magnetic stirring 

(ca. 100 rpm) in a water bath at constant temperature until complete separation of the oil and 

aqueous phases occurred. Then the separated oil-water mixture was cooled down to room 

temperature and was re-homogenized at 11,000 rpm for 2 min. This process was repeated several 

times as required.  
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Measurements 

(a) Surface tension 

The air-water surface tension of aqueous solutions of nonionic surfactant with and without 

silica nanoparticles was measured by the du Noüy ring method at 25  0.5 C using a home-built 

instrument [44].  

(b) Adsorption of nonionic surfactant at particle-water interface 

The adsorption isotherm of C12E5 at the silica particle-water interface from aqueous solution 

was measured by depletion at 25 C. Here, 0.5 wt.% silica nanoparticles were dispersed in 

aqueous solutions of C12E5 of different concentration using ultrasound and the dispersions were 

allowed to stand for 24 h at 25 C to reach adsorption equilibrium at the solid-water interface (no 

sedimentation of particles was observed). Then the dispersion was transferred to a measuring 

vessel for surface tension measurement (without separating the particles). The equilibrium 

concentrations (< cmc) of C12E5 in the dispersions were obtained from the measured surface 

tension by calibration with the surface tension of C12E5 solutions without silica particles. [49]  

(c) Contact angle at oil-water-quartz and air-water-quartz interface  

Quartz slides (Beijing Zhongjingkeyi Technology Co. Ltd.) were cut into strips of 1.5 cm 

width and soaked in a 30% aqueous NaOH solution for 24 h, followed by rinsing using pure 

water and drying in air. A clean strip was placed in a cubic cuvette (35mm (L) × 25mm (D) × 

20mm (H)) with the two ends being supported by two standing legs. The cuvette was filled with 

an aqueous solution of C12E5 until the strip was immersed. After reaching adsorption equilibrium 

(24 h), a toluene drop of 1 L was released from a U-shaped needle underneath the strip in 

solution, which was captured by the strip to form an inverted sessile drop. The contact angle 

through the aqueous phase was measured using a Dropmeter A-100 drop shape analyzer (Ningbo 
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Haishu Maishi Scientific Test Co.). To measure the contact angle at the air-water-quartz interface, 

a 1 L drop of aqueous C12E5 solution was released from a needle to a clean quartz slide to form 

a sessile drop. The temperature was kept at 25  0.5 oC during measurement using an air-therm 

heater (Air-Thermz-ATX, World Precision Instruments).  

(d) Partition coefficient of nonionic surfactants between toluene and water  

5 mL toluene and 5 mL pure water with nonionic surfactant dissolved in either toluene or 

water at a certain concentration were mixed thoroughly in a glass vessel followed by further 

pre-equilibrating for more than 12 h at 25 C and 45 C/60 C using a perpendicular rotator. After 

a further 12 h without stirring, the toluene layer was then separated and the concentration of 

surfactant was measured using an HPLC instrument (Ultimate 3000 RS, Thermo Fisher Scientific) 

equipped with an evaporation-light scattering detector (ELSD 6000, Alltech) and a column of 

Hedera ODS-2 4.6 mm × 250 mm filled with silica particles of 10 nm – 5 μm. The instrument 

was operated at a N2 pressure of 25 psi and a detection temperature of 60C using methanol as 

flow liquid at a flow rate of 0.8 mL/min and a gas flow rate of 1.6 mL/min. The surfactant 

concentration in toluene was calculated from the peak area using a standard area-concentration 

correlation obtained from solutions of known concentration of surfactant in toluene as calibration. 

(e) Determination of silica nanoparticle concentration in the aqueous phase of emulsions 

Toluene-in-water emulsions (10 mL/10 mL) stabilized 0.5 wt.% silica nanoparticles in 

combination with 0.3 mM C12E5 were prepared in a vessel of 40 mL (2.7 cm (d)  9.5 cm (h)) as 

described above. For one emulsion, the aqueous phase separated after creaming at 25 °C was 

removed using a syringe and was transferred to a glass vessel of 25 mL which had previously 

been dried and weighed. The mass of aqueous phase was recorded. The water in the solution was 

evaporated by heating close to 100 °C in an oven and the particles were finally dried at 110 °C to 
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constant weight. The weight of the particles remaining was obtained from which the 

concentration (mass percentage) of silica nanoparticles dispersed in the aqueous phase of the 

emulsion can be calculated. The remainder of the particles is considered adsorbed at droplet 

interfaces in the emulsion. For other emulsions, a similar procedure was followed after 

demulsification at 45 °C.   

(f) Phase inversion temperature of dodecane-water emulsion stabilized by C12E5  

   The phase inversion temperature (PIT) of dodecane-water emulsions stabilized solely by 

C12E5 was measured using conductivity. The aqueous solution contained 6 mM C12E5 and 1.0 

mM NaCl. 7 mL aqueous solution and 7 mL dodecane were added to a glass vessel (25 mL), 

which was placed in a thermostatic water bath with temperature being controlled at a precision of 

0.1 C. When the specified temperature was achieved, the mixture was homogenized within the 

water bath as described above to form an emulsion, whose conductivity was measured 

immediately using a digital conductivity meter (FE30, Mettler Toledo). A series of batch 

emulsions was prepared at different temperatures between 35 °C and 45 C. The conductivity of 

emulsions stabilized by silica nanoparticles in combination with C12E5 was similarly measured 

over a wider temperature range, in which the aqueous phase contained 0.5 wt.% of particles, 6 

mM C12E5 and 1.0 mM NaCl. 

 

Results and discussion 

(a) Formation of Pickering emulsions at room temperature    

The hydrophilic silica nanoparticles (HL-200) are negatively charged at pH > 3, as shown in 

Figure S1(c). The nonionic surfactant C12E5 dissolves in pure water giving a transparent solution 

at room temperature (22 C) in accordance with its hydrophilie-lipophile balance number of 11.7, 
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and a 1 wt.% solution exhibits a cloud point of 31 C. The air-water surface tension against 

surfactant concentration (C) curve at 25 C is shown in Figure 1, yielding a cmc of 0.06 mM in 

good agreement with the literature value of 0.07 mM [50]. The calculated saturation adsorption 

() near the cmc is equal to 3.510-10 mol/cm2 corresponding to an area per molecule of 0.47 ± 

0.03 nm2. 

The bare silica nanoparticles alone at a concentration of 0.5 wt.% cannot stabilize a 

toluene-in-water emulsion at room temperature due to their extreme hydrophilicity, [6] as shown 

in Figure 2(A) where very large droplets and coalesced oil phase were observed in the upper 

layer. For C12E5 alone, although it prefers to stabilize toluene-in-water emulsions, [51] they are 

extremely unstable and no stable emulsion can be formed at initial concentrations in water below 

1 mM as shown in Figure 2(B). Based on HPLC measurements, a partition coefficient P = Co/Cw 

= 3.17 for C12E5 between toluene and water at 25 C was measured for an initial concentration of 

0.3 mM dissolved initially in either water or toluene, as shown in Table 1 and Figure S3, 

indicating that 3/4 of the surfactant distributes as monomer in favour of the toluene phase. Thus 

concentrations much higher than the cmc in water are needed to prepare stable emulsions. [52] In 

fact, no stable emulsion was obtained at concentrations up to 90 mM in water when toluene was 

used as the oil phase. However, when 0.5 wt.% silica nanoparticles were dispersed in aqueous 

solutions of C12E5 at low concentration (0.01-1 mM), relatively stable toluene-in-water emulsions 

were formed by homogenization. These emulsions showed almost no change in appearance after 

one week at room temperature as seen in Figures 2(C) and (D), and although creaming occurred 

no coalescence was visible up to at least 3 months. The average droplet diameter decreases with 

increasing surfactant concentration from ca. 400 m at 0.06 mM to 50-100 m at 1 mM (Figure 

3). The latter is still larger than that (15-40 m) of a dodecane-in-water emulsion stabilized by 



 11

C12E5 alone at 3 mM as shown in Figure 3(F), indicating that these droplets are mainly stabilized 

by surfactant-coated particles instead of C12E5 molecules, although the latter may also adsorb at 

the oil-water interface. The emulsions stabilized by silica in combination with a low 

concentration of C12E5 are therefore Pickering emulsions.  

 

(b) Thermo-responsive character of Pickering emulsions    

Although the Pickering emulsions containing particles and surfactant remained stable to 

coalescence at room temperature for more than 3 months, demulsification occurred once the 

emulsions containing 0.5 wt.% silica and C12E5 at different concentrations were placed in a water 

bath at 45 C and subjected to gentle magnetic stirring. As an example, the demulsification 

process at 45 °C is shown in Figure S4, where demulsification was observed as a gradual process 

under gentle stirring (ca. 100 rpm) and complete phase separation occurred after about 35 min, 

whereas no demulsification was observed up to 2 h without stirring. Stirring is therefore 

necessary for demulsification, which may increase the contact opportunity of oil droplets in the 

aqueous phase and enhance diffusion of the nonionic surfactant from the aqueous phase to the oil 

phase at elevated temperature, accelerating desorption of nonionic surfactant from particle 

surfaces and thereby desorption of particles from oil-water interfaces. It was also noticed that 

demulsification is accelarated upon increasing the stirring speed. A stirring speed of ca. 100 rpm 

was thus selected to evaluate the effects of temperature and surfactant concentration on 

demulsification.  

The time required to achieve complete phase separation at 45 °C increases with increasing 

C12E5 concentration, from ca. 10 min for 0.03 mM C12E5 to ca. 45 min for 1 mM C12E5 (it takes 

about 4 min for the temperature of the emulsion to increase from 22 C to 45 C), Figure 4(a). 
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Alternatively, at a lower temperature of 30 C, it takes longer (120 min for 0.3 mM C12E5) to 

achieve complete phase separation. Once the temperature is increased to 35 C and beyond the 

time required decreases almost linearly with increasing temperature, as shown in Figure 4(b). 

Then, once the separated oil-water mixture was cooled down to room temperature, a stable 

Pickering emulsion was formed again by re-homogenization. Although homogenization at 45 C 

yielded a temporary stable emulsion, it demulsified quickly (19 min) at 45 C with gentle stirring 

whereas the emulsion homogenized at 25 C remained stable. This demulsification/emulsification 

pattern was cycled six times as shown in Figure 5(A), and the micrographs shown in Figure 6 

indicate that the average emulsion droplet size decreases slightly after each cycle. This may be 

caused by a decrease of the oil-water interfacial tension following successive emulsification/ 

demulsification cycles. Prior to the first homogenization, the surfactant is dissolved in the 

aqueous phase and the interfacial tension is 7.1  0.6 mN/m; monomer partitioning to oil is not 

fully achieved however. After two cycles of emulsification/demulsification, the interfacial 

tension decreases to 5.6  0.1 mN/m following achievement of surfactant partitioning and 

equilibrium adsorption.     

Similar demulsification/emulsification cycling can be achieved when using dodecane as the 

oil phase, as shown in Figure 5(B). The reduced monomer solubility of C12E5 in dodecane 

compared with toluene leads to the formation of stable dodecane-in-water emulsions using C12E5 

as emulsifier alone, as shown in Figure 3 (F). An o/w emulsion stabilized by C12E5 alone at 6 mM 

can be phase inverted to water-in-oil by heating with a phase inversion temperature of around 41 

C being determined from emulsion conductivity measurements (Figure S5). In the presence of 

0.5 wt.% silica nanoparticles, however, no phase inversion is observed up to 75 °C and the 

emulsion conductivity remains almost constant and high indicative of o/w emulsions. 
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Nevertheless, the time required for complete phase separation of the dodecane-in-water emulsion 

at 45 °C is similar to that for the toluene-in-water emulsion (35 min). 

 

(c) Effect of POE chain length     

To examine the effect of the POE chain length on the formation of Pickering emulsions and 

their thermo-responsive character, a series of pure nonionic surfactants with either shorter or 

longer POE chain length than 5 (C12Em, m = 2, 3, 4 and 10) was investigated. Since the shorter 

analogues with m = 2, 3 or 4 are less soluble in water, they were initially dissolved in toluene. 

Partitioning of monomeric surfactant into water occurs to a greater or lesser extent depending on 

the value of m (Table 1). The results for C12E4 and C12E10 are shown in Figures 7 and 8 

respectively, and those with C12E3 and C12E2 are shown in Figures S6 and S7, respectively.  

It is seen that at room temperature although the nonionic surfactants with relatively short 

POE chains (m = 2, 3 or 4) favor toluene-in-water emulsions at high concentration (100 mM), the 

emulsions are not stable at concentrations  10 mM. However, mixtures of 0.5 wt.% silica 

nanoparticles in combination with these surfactants at low concentration do stabilize Pickering 

toluene-in-water emulsions. A distinct character for these systems is that the minimum 

concentration of the nonionic surfactant required to prepare a stable Pickering emulsion increases 

upon decreasing the POE chain length. It is approx. 0.01 mM for C12E5 (initially in water), 0.3 

mM for C12E4, 3 mM for C12E3 and 10 mM for C12E2 (initially in toluene). This is probably due to 

an increase in the partitioning of monomeric surfactant to the oil phase upon decreasing the POE 

chain length (Table 1), leaving a lower concentration in water where particles originate. However, 

all these toluene-in-water Pickering emulsions can be demulsified upon increasing the 

temperature. This holds for all surfactant concentrations. For example, at 45 C complete phase 



 14

separation occurs in about 30 min for emulsions stabilized by 0.5 wt.% silica nanoparticles in 

combination with either 6 mM C12E4 or 10 mM C12E2, and the cooled mixtures re-form stable 

emulsions upon re-homogenization. The demulsification/emulsification cycling for the two 

emulsions is shown in Figure 7 and Figure S7, respectively.      

By contrast, the nonionic surfactant C12E10 is very soluble in water (cloud point of 1 wt.% 

solution = 79 C) and can form toluene-in-water emulsions alone stable to coalescence once the 

concentration in water reaches around 1 mM (cmc = 0.04 mM at 25C, Figure S8), as shown in 

Figure 8(A). This is because partitioning of its monomer to oil is significantly reduced as a result 

of the very hydrophilic headgroup (Table 1). When 0.5 wt.% silica nanoparticles were dispersed 

in this nonionic surfactant solution, stable toluene-in-water Pickering emulsions were now 

formed at concentrations of C12E10 as low as 0.06 mM or 1.5 cmc seen in Figure 8(B). Their 

average droplet diameters decrease with increasing surfactant concentration (Figure 8, a-d), 

similar to that for C12E5 emulsions. The minimum concentration of C12E10 required to form a 

stable emulsion (0.06 mM) is higher than that for C12E5 (0.01 mM) however. This may be caused 

by the long headgroup length in C12E10 which reduces the tendency of the surfactant to adsorb at 

particle surfaces and leads to reduced hydrophobisation in situ. For a Pickering emulsion 

stabilized by 0.5 wt.% silica and 0.1 mM C12E10, complete demulsification/phase separation was 

not observed at 45 C with gentle stirring for up to 4 h and no significant increase in droplet size 

was noticed, Figure 8 (b and b’). However, partial phase separation was achieved at 60 C with 

stirring for more than 1 h and complete phase separation was achieved at 79 C with stirring for 

20 min (Figure 8(C)). A stable Pickering emulsion was then re-formed by homogenization after 

cooling the separated oil-water mixture to 25 °C. At a lower C12E10 concentration of 0.06 mM, 

the emulsion formed at 25 °C is less stable initially and easily demulsified within 10 min at 79 C, 
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suggesting that longer time may be needed at higher surfactant concentration. At higher 

concentrations of C12E10 ( 1 mM), the emulsion may no longer be a true Pickering emulsion 

since the nonionic surfactant alone also stabilizes an emulsion. This is evidenced by the 

micrographs shown in Figure 8 (d and e) where the size of the droplets stabilized by 0.5 wt.% 

silica with 1 mM C12E10 are similar to those stabilized by C12E10 alone. Also, the separated 

aqueous phase following creaming is cloudy suggesting the presence of non-adsorbed particles.    

 

(d) Postulated mechanism of stabilization/destabilisation of emulsions 

The experimental results above show a definite synergism between the hydrophilic silica 

nanoparticles and nonionic surfactant at low concentration in significantly enhancing emulsion 

stability. This synergism has been observed previously by other researchers [49, 53-55]. Since both 

the silica nanoparticles and nonionic surfactant at low concentration cannot stabilize emulsions 

when used alone and Pickering emulsions were formed by using their mixture, it is suggested that 

the hydrophilic nanoparticles are hydrophobized in situ by the nonionic surfactant. This occurs by 

the adsorption of surfactant at the particle-water interface which renders the particles 

surface-active. In similar mixtures, the adsorption of the coated particles at the oil-water interface 

of droplets has been confirmed by freeze-fracture electron microscopy [53]. Here, the adsorption 

of the coated-particles can be observed from micrographs of the toluene-in-water Pickering 

emulsion stabilized by 0.5 wt.% silica nanoparticles and 0.3 mM C12E5 shown in Figure 9. In (a), 

the surface of a partially dried droplet can be seen to be textured and a completely dried droplet 

in (b) shows cracks in the shell. This is supported by the data shown in Table 2 where in the 

Pickering emulsion around 38% of the silica nanoparticles adsorbed at droplet surfaces after 

emulsification at 25C. The adsorption of particles at droplet surface is also evident in mixtures 
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with C12E4 (c) or C12E10 (d). By contrast, neither of these features was observed for droplets 

stabilized by C12E10 alone at 1 mM (e and f).  

When nonionic surfactant dissolves in water, hydrogen-bonding occurs between the oxygen 

atoms in the POE headgroup and the hydrogen atoms in water molecules. Due to the high 

propensity of SiOH groups on the surface of hydrophilic silica nanoparticles in water, it is 

believed that a nonionic surfactant adsorbs to particle surfaces via hydrogen-bonding involving 

the POE headgroup exposing the alkyl chain towards water. [48, 56, 57] This head-on configuration 

is akin to that of cationic surfactants which have been shown to hydrophobize the particles in situ. 

[43, 44] We have determined the adsorption isotherm of C12E5 at the silica-water interface at 25 °C 

by the depletion method with the equilibrium surfactant concentration in water being determined 

via surface tension measurements. [44, 49] Figure 1 shows that at the same initial surfactant 

concentration, the surface tensions of aqueous C12E5 solutions containing silica particles are 

higher than that of solutions without particles as a result of loss of some surfactant to particle 

surfaces. Below the cmc, the surface tension-concentration data can be well fitted by the 

Szysykowski equation [1] (dashed line in Figure 1), and the equilibrium concentration of C12E5 in 

the particle dispersion can thus be calculated from the measured surface tension. The adsorption 

isotherm of C12E5 at the silica-water interface is also shown in Figure 1, with maximum 

adsorption (1.2 mmol/g) equivalent to 0.28 nm2 per molecule being achieved at an equilibrium 

concentration of 0.048 mM (0.8 cmc), suggesting double layer or hemi-micelle adsorption. But at 

an initial concentration equal to the cmc (Ceq = 0.02 mM), the adsorption (7.910-3 mmol/g) is 

equivalent to a molecular area of 42.2 nm2 per molecule suggesting sub-monolayer adsorption. 

This molecular area is larger than that of the cationic surfactant cetyltrimethylammonium 

bromide at an equivalent concentration [47], implying that the POE headgroup occupies more 
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adsorption sites on these particles. The maximum adsorbed amount of C12E5 (1.2 mmol/g) is 

larger than that of C12E7 (0.5 mmol/g) on hydrophilic fumed silica of similar surface area (200 

m2/g) obtained earlier, [49] in agreement with the finding that nonionic surfactants with short POE 

headgroup usually exhibit higher adsorption than those with long POE headgroup. [56] 

The zeta potential of the silica particles (0.1 wt.%) dispersed in aqueous C12E5 solutions at 

25 C was measured. It was found that over a wide concentration range (0.001 - 1 mM), the zeta 

potential remains unchanged at - 25.6  0.3 mV and is equal to that in pure water (- 25.2 mV). 

Similar results have been reported by other researchers [58]. This negative zeta potential alongwith 

a small primary particle size enables these silica particles to disperse well in solutions of C12E5 

without sedimentation at both room temperature and beyond. 

The hypothesized configuration of the nonionic surfactant at the particle-water interface 

with the POE headgroup towards particle surfaces is supported by measurements of the contact 

angle at both the air-water-quartz and the oil-water-quartz interfaces. As seen in Figure 10, the 

contact angle of the aqueous phase on a quartz slide in air increases with increasing C12E5 

concentration, from close to 0 (pure water) to a maximum of 45 at 0.03 mM (0.5 cmc), and then 

decreases with further increase in surfactant concentration. This pattern of behaviour has been 

observed for cationic surfactants adsorbed on a negatively charged glass slide, although the 

maximum contact angle in the latter case is much larger. [44] The maximum contact angle is 

higher than that of nonyl phenol ethoxylated surfactants (30) and octaethylene glycol 

monododecyl ether (C12E8, 25) on hydrophilic silica surfaces obtained by Scales et al. using the 

captive bubble method. [59] The increase in contact angle with surfactant concentration is 

sufficient for the silica nanoparticles to become surface-active enabling them to stabilize 

emulsions. At higher concentration, it is believed that the nonionic surfactant adsorbs on silica 
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particle surfaces as hemi-micelles or in the form of a bilayer [56-57,59-61], which usually occurs at 

concentrations around the cmc, rendering particles hydrophilic again such that they desorb from 

the oil-water interface of emulsion drops. The contact angle is seen to decrease in this region. 

However, when air is replaced by toluene which has been pre-equilibrated with the aqueous 

phase containing C12E5, although the overall pattern remains unchanged, the curve moves 

downward and the maximum contact angle decreases to 25. This is because a large fraction of 

surfactant partitions into oil (Table 1) such that the remaining concentration of C12E5 in the 

aqueous phase is much lower than the initial concentration. As a result, even at a high C12E5 

concentration initially in water (3-30 mM), a Pickering emulsion is still formed in the presence of 

particles (no stable emulsion in the absence of particles) as shown in Figure S9. In contrast, when 

the more hydrophilic C12E10 was used in combination with silica, emulsions at high surfactant 

concentration do transform to those stabilized by surfactant alone (Figure 8(d) and (e)). This is in 

line with the observation that the synergism between silica particles and nonionic surfactant 

occurs at intermediate concentrations of surfactant. [49, 53, 54] 

Similar to the hydrogen bonds between POE headgroups and water molecules, that between 

the nonionic surfactant and silanol groups on particle surfaces is thermo-sensitive, being 

weakened or destroyed upon increasing temperature. In emulsions stabilized solely by relatively 

high concentrations of nonionic surfactant, dehydration of headgroups with increasing 

temperature can induce emulsion phase inversion [1, 51]. Here, no emulsion phase inversion was 

observed since (a) low concentrations of surfactant are used and (b) emulsions are not stabilized 

by surfactant alone. On one hand destruction of the hydrogen bonds between particles and 

nonionic surfactant promotes desorption of surfactant from particle surfaces, and on the other 

hand destruction of the hydrogen bonds between nonionic surfactant and water promotes 
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surfactant to transfer to the oil phase, which reduces the equilibrium concentration of surfactant 

in the aqueous phase and thereby results in desoprtion of surfactant from particle surfaces. 

Particles are thus rendered hydrophilic and desorb from emulsion drop interfaces leading to 

demulsification. This is directly evidenced by the data shown in Tables 1 and 2. For the Pickering 

emulsion stabilized by 0.5 wt.% silica nanoaparticles and 0.3 mM C12E5, the concentration of 

C12E5 in toluene after demulsification at 45C was measured to be 0.275 mM, which gives an 

equilibrium aqueous phase concentration of 0.0145 mM based on P = 19. At this concentration, 

the adsorption of C12E5 at particle surfaces is as low as 3.1310-3 mmol/g, equivalent to a 

molecular area of 106 nm2, i.e. negligible adsorption. The silica nanoparticles are rendered 

hydrophilic as reflected by the percentage adsorbed at drop interfaces which decreases from 38% 

at 25 C to 11% at 45 C. 

At higher temperatures, the time required for this to occur is reduced. Since the hydrogen 

bonding can be reversibly recovered by cooling the system to low temperature, stable Pickering 

emulsions are formed again at room temperature after re-homogenization. Theoretically, nonionic 

surfactants with smaller POE headgroups may exhibit higher adsorption [56] at particle surfaces 

and thus display an increased in situ hydrophobization of particles. Unfortunately, the solubility 

of the surfactant in water decreases significantly on decreasing the number of oxyethylene groups. 

In the presence of toluene, monomeric nonionic surfactant of low oxyethylene number distributes 

heavily in favour of the oil phase (Table 1). This leads to a significant increase in the total 

concentration of surfactant required for the synergism to occur. However, both the time and 

temperature required for demulsification of the stable emulsions are similar to those required for 

the C12E5 system. When using a surfactant with a long POE headgroup like C12E10, the 

temperature for demulsification increases as expected. However, the efficiency of C12E10 in 
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providing synergism is lower than that of C12E5, probably due to its lower adsorption at the 

particle-water interface. [56] Nevertheless, this protocol provides a means for practical 

applications to obtain a suitable demulsification temperature by varying the number of 

oxyethylene groups in a nonionic surfactant. We believe that a good balance between high 

efficiency and a suitable demulsification temperature can be achieved by designing or selecting 

the appropriate nonionic surfactant. 

 

Conclusions  

We have demonstrated a simple protocol to prepare thermo-responsive Pickering 

oil-in-water emulsions by using hydrophilic silica nanoparticles in combination with a low 

concentration of nonionic surfactant possessing a polyoxyethylene headgroup. The Pickering 

emulsions are stable at room temperature but exhibit coalescence at elevated temperature and 

emulsification/demulsification can be cycled many times. The time required for demulsification 

decreases with increasing temperature but increases with increasing surfactant concentration; the 

demulsification temperature can also be controlled by the length of the POE headgroup. 

Adsorption of the nonionic surfactant at the particle-water interface via hydrogen-bonding is 

responsible for endowing the particles with sufficient surface activity for emulsion stabilization. 

This is lost at higher temperature leading to particle desorption from drop interfaces due to the 

weakening of the hydrogen bonds and increased partitioning of the nonionic surfactant to the oil 

phase. Those surfactants with intermediate POE headgroup length seem to be more efficient than 

those with either a short headgroup which distribute heavily in favour of the oil phase or those 

with a long headgroup which adsorb less at the particle-water interface. In general, the in situ 

hydrophobization of silica nanoparticles by nonionic surfactant is strong enough to enable 
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stabilization of a Pickering emulsion but is weaker than that produced by either cationic 

surfactant or alkyl carboxyl betaine surfactant in neutral and acidic aqueous media respectively.  

 

Keywords: Thermo-responsive; Pickering emulsions; silica nanoparticles; nonionic surfactant; 

hydrophobization; contact angle 
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C, photographs of toluene-in-water emulsions stabilized by C12E5 alone and mixtures of 0.5 

wt.% silica nanoparticles and C12E5 at different concentrations and micrographs of the droplets 

stabilized by the mixtures. 
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Table 1. Partition coefficient (P = Co/Cw) of nonionic surfactant between equal volumes of 

toluene and water phases at different temperatures obtained by measuring Co using HPLC. The 

value of Co used to calculate P is an average of the concentration in toluene obtained with 

surfactant initially dissolved in either water or toluene. 

    

Surfactant 
Cw 

(initial) 
/mM 

25 C 45 C 60 C 

  Co/mM  P  Co/mM  P  C0/mM  P 

C12E4 6.0 4.95  0.09 4.71 5.77  0.05 25.10   

C12E5 0.3 0.23  0.01 3.17 0.28  0.01 19.00   

C12E10 0.3 0.18  0.01 1.48   0.25  0.01 5.52 

C12E5 

with 0.5 wt.% 
silica particles 

0.3 emulsified  0.27    

 

 

 

Table 2. Percentage of silica nanoparticles adsorbed at oil-water interfaces in toluene-in-water 

emulsions stabilized by 0.5 wt.% silica nanoparticles in combination with 0.3 mM C12E5 at two 

temperatures, obtained by measuring the concentration of particles remaining in the aqueous 

phase after emulsification, Cp.  

Temperature/C          After emulsification % adsorbed 

Vaq/mL   Mass 
particles/g 

   Cp/% 

25 4.9983 0.0154 0.308 
37.4  1.4 25 5.0023 0.0159 0.318 

45 5.0121 0.0227 0.453 
11.0  2.2 45 5.0051 0.0219 0.438 
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Figure 1. Surface tension (left ordinate) of aqueous C12E5 solutions without and with 0.5 wt.% 

silica nanoparticles and adsorbed amount (right ordinate) of C12E5 at the silica nanoparticle-water 

interface as a function of initial and equilibrium C12E5 concentration, respectively at 25 C. 

Dashed line is the fit to the data for calculation of the surface concentration. 
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Figure 2. Photographs of vessels containing toluene-in-water (7 mL/7 mL) emulsions stabilized 

by (A) 0.5 wt.% silica nanoparticles alone, (B) C12E5 alone at different concentrations and (C), (D) 

mixtures of 0.5 wt.% silica nanoparticles and C12E5 at different concentrations taken 24 h (A-C) 

and 1 week (D) after preparation. [C12E5]/mM in water from left to right: 0.01, 0.03, 0.06, 0.1, 

0.3, 0.6 and 1. Temperature = 22  2 °C.  
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Figure 3. Optical micrographs of (A-E) toluene-in-water emulsion droplets stabilized by a 

mixture of 0.5 wt.% silica nanoparticles and different concentrations of C12E5 and (F) 

dodecane-in-water emulsion droplets stabilized by C12E5 alone taken 24 h after preparation. 

[C12E5]/mM in water from A to F: 0.06, 0.1, 0.3, 0.6, 1 and 3. Temperature = 22  2 °C. 
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Figure 4. Time required for complete demulsification of a toluene-in-water emulsion stabilized 

by (a) mixtures of 0.5 wt.% silica nanoparticles and C12E5 at different concentrations after 

warming to 45 C with gentle stirring (100 rpm) and (b) 0.5 wt.% silica nanoparticles and 0.3 

mM C12E5 after warming to different temperatures with gentle stirring (100 rpm). 
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Figure 5. Photographs of (A) a toluene-in-water emulsion and (B) a dodecane-in-water emulsion 

stabilized by a mixture of 0.5 wt.% silica nanoparticles and 0.3 mM C12E5 following heating with 

stirring to 45 C and cooling to 25 C with re-homogenization for a number of cycles taken 24 h 

after preparation. (a) and (f) initial emulsion at 25 °C, (b) and (g) demulsified for the first time, (c) 

and (h) re-emulsified, (d) demulsified for the fifth time, (e) emulsified for the sixth time.  
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Figure 6. Optical micrographs of respective toluene-in-water emulsions shown in Figure 5 taken 

24 h after preparation at room temperature (22  2 °C). (a) Initial emulsion, (c) and (e) emulsion 

formed by homogenizing after demulsification once and six times, respectively.  
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Figure 7. Photographs of toluene-in-water (7 mL/7 mL) emulsions stabilized by (A) C12E4 alone 

and (B) mixtures of 0.5 wt.% silica nanoparticles and C12E4 at different concentrations taken 1 

week after preparation at room temperature (22  2 °C). [C12E4]/mM in oil from left to right: 0.01, 

0.03, 0.06, 0.1, 0.3, 0.6, 1, 3, 6 and 10. (C) Photographs of thermo-triggered 

demulsification/emulsification cycling of the emulsion stabilized by 0.5 wt.% silica and 6 mM 

C12E4 taken 24 h after operation; (left) initial emulsion at room temperature (22 °C), (middle) 

demulsified for the first time at 45 °C, (right) emulsified again at 25 °C. 
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Figure 8. Photographs of toluene-in-water (7 mL/7 mL) emulsions stabilized by (A) C12E10 alone 

and (B) mixtures of 0.5 wt.% silica nanoparticles and C12E10 at different concentrations taken 1 

week after preparation at room temperature (22  2 °C). [C12E10]/mM in water from left to right: 

0.01, 0.03, 0.06, 0.1, 0.3, 0.6, 1 and 3. Micrographs of particle + surfactant emulsion (a-d) and 

emulsion of C12E10 alone (e) taken 24 h after preparation, as well as mixed emulsion (b’) taken 4 

h after being placed in a water bath at 45 C with gentle stirring. [C12E10]/mM is (a) 0.06, (b), (b’) 

0.1, (c) (0.3), (d), (e) 1. (C) Photos of demulsification/emulsification cycling of an emulsion 

stabilized by 0.5 wt.% silica nanoparticles and 0.1 mM C12E10.  
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Figure 9. Micrographs of toluene-in-water Pickering emulsion droplets stabilized by 0.5 wt.% 

silica nanoparticles in combination with (a and b) 0.3 mM C12E5, (c) 0.6 mM C12E4 and (d) 0.3 

mM C12E10 respectively, and toluene-in-water emulsion droplets stabilized by (e and f) 1 mM 

C12E10 alone at room temperature (22  2 °C). (a) Partially dried Pickering oil droplet with 

wrinkled surface, (b-d) fully dried Pickering oil droplets displaying a surface shell with cracks 

and broken solid films, (e) fresh oil droplets with smooth surfaces and (f) oil droplets nearly fully 

dried exhibiting no surface shell. 
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Figure 10. Contact angles of drops of aqueous C12E5 on a quartz slide in air (triangles) and 

contact angles through water of a toluene drop under an aqueous solution of C12E5 on a quartz 

slide (circles) as a function of the initial surfactant concentration in water at 25 C. Toluene was 

pre-equilibrated with an equal volume of aqueous C12E5 solution for 24 h at 25 C beforehand.  
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