10,851 research outputs found

    Higher Order Acoustoelastic Lamb Wave Propagation in Stressed Plates

    Get PDF
    Residual stresses can be generated during fabrication processes, such as, welding, forging, rolling etc[1-3] . They have obvious influence on the performance of the material, like cracking and corrosion. To better control residual stresses, the initial distribution of them in materials must be clear. Ultrasonic methods can be used as a good tool for residual stress detection, and this approach is non-destructive and costs are modest. Methods which utilize longitudinal critically refracted (LCR) waves are receiving increased attention and it can be used on thick material. However, there have only been a limited number of studies which consider the acoustoelastic effect for thin plate materials which generate Lamb waves[4] . This paper reports a study in which a numerical model[5-6] is used to investigate the Lamb wave dispersion curves under loading that induce stresses. The effects of stress on various Lamb modes are discussed and those which appear to be most sensitive are identified. It is found that when the stress’s direction is the same with wave propagation direction in a 1 mm thick aluminum plate the A0 mode is the most sensitive to the applied stress

    Neutrino masses, leptogenesis and dark matter in hybrid seesaw

    Get PDF
    We suggest a hybrid seesaw model where relatively ``light''right-handed neutrinos give no contribution to the neutrino mass matrix due to a special symmetry. This allows their Yukawa couplings to the standard model particles to be relatively strong, so that the standard model Higgs boson can decay dominantly to a left and a right-handed neutrino, leaving another stable right-handed neutrino as cold dark matter. In our model neutrino masses arise via the type-II seesaw mechanism, the Higgs triplet scalars being also responsible for the generation of the matter-antimatter asymmetry via the leptogenesis mechanism.Comment: 4 page

    Research on model of 6005A aluminum alloy

    Get PDF
    The deformation behavior of 6005A aluminum alloy at a strain rate of 0,01-10s-1, a deformation temperature of 673- 773K and a total strain of 0,8 was studied. Using the stress-strain data of 6005A aluminum alloy with a strain of 0,05-0,8, an Arrhenius-type constitutive model was established. And verified the accuracy of the model. The results show that: the flow stress of 6005A aluminum alloy increases with the increase of strain rate, and decreases with the increase of deformation temperature; Under different strains, the correlation coefficient (R) between the experimental value and the predicted value is as high as 98 %, and the average relative error (AARE) is less than 10 %, indicating that the established model has high predictability

    Making On-Demand Routing Efficient with Route-Request Aggregation

    Full text link
    In theory, on-demand routing is very attractive for mobile ad hoc networks (MANET), because it induces signaling only for those destinations for which there is data traffic. However, in practice, the signaling overhead of existing on-demand routing protocols becomes excessive as the rate of topology changes increases due to mobility or other causes. We introduce the first on-demand routing approach that eliminates the main limitation of on-demand routing by aggregating route requests (RREQ) for the same destinations. The approach can be applied to any existing on-demand routing protocol, and we introduce the Ad-hoc Demand-Aggregated Routing with Adaptation (ADARA) as an example of how RREQ aggregation can be used. ADARA is compared to AODV and OLSR using discrete-event simulations, and the results show that aggregating RREQs can make on-demand routing more efficient than existing proactive or on-demand routing protocols

    Numerical simulation of welding of intersecting line joints of 6061-T6 aluminum alloy bicycle frame

    Get PDF
    The joints of aluminum alloy frames are usually welded by manual TIG welding. In order to study the distribution law of welding stress level and welding temperature field of intersecting joints of 6061-T6 aluminum alloy bicycle frames, a intersecting joints model of welding parts was established by Finite Element Model (FEM), Software. Based on ABAQUS software, the welding temperature field and welding stress field were studied and analyzed by using direct thermal coupling method. The accuracy of welding simulation is fully verified, which can meet the simulation requirements required for the subsequent optimization process design, and achieve the purpose of shortening the time required for the accumulation of practical inspection

    Granulocyte, granulocyte–macrophage, and macrophage colony-stimulating factors can stimulate the invasive capacity of human lung cancer cells

    Get PDF
    We and other researchers have previously found that colony-stimulating factors (CSFs), which generally include granulocyte colony-stimulating factor (G-CSF), granulocyte–macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF), promote invasion by lung cancer cells. In the present study, we studied the effects of these CSFs on gelatinase production, urokinase plasminogen activator (uPA) production and their activity in human lung cancer cells. Gelatin zymographs of conditioned media derived from human lung adenocarcinoma cell lines revealed two major bands of gelatinase activity at 68 and 92 kDa, which were characterized as matrix metalloproteinase (MMP)-2 and MMP-9 respectively. Treatment with CSFs increased the 68- and 92-kDa activity and converted some of a 92-kDa proenzyme to an 82-kDa enzyme that was consistent with an active form of the MMP-9. Plasminogen activator zymographs of the conditioned media from the cancer cells showed that CSF treatment resulted in an increase in a 48–55 kDa plasminogen-dependent gelatinolytic activity that was characterized as human uPA. The conditioned medium from the cancer cells treated with CSFs stimulated the conversion of plasminogen to plasmin, providing a direct demonstration of the ability of enhanced uPA to increase plasmin-dependent proteolysis. The enhanced invasive behaviour of the cancer cells stimulated by CSFs was well correlated with the increase in MMPs and uPA activities. These data suggest that the enhanced production of extracellular matrix-degrading proteinases by the cancer cells in response to CSF treatment may represent a biochemical mechanism which promotes the invasive behaviour of the cancer cells. © 1999 Cancer Research Campaig
    • …
    corecore