18 research outputs found

    Far-Infrared Spectroscopy of Cationic Polycyclic Aromatic Hydrocarbons: Zero Kinetic Energy Photoelectron Spectroscopy of Pentacene Vaporized from Laser Desorption

    Get PDF
    doi:10.1088/0004-637X/715/1/485The distinctive set of infrared (IR) emission bands at 3.3, 6.2, 7.7, 8.6, and 11.3 Îźm are ubiquitously seen in a wide variety of astrophysical environments. They are generally attributed to polycyclic aromatic hydrocarbon (PAH) molecules. However, not a single PAH species has yet been identified in space, as the mid-IR vibrational bands are mostly representative of functional groups and thus do not allow one to fingerprint individual PAH molecules. In contrast, the far-IR (FIR) bands are sensitive to the skeletal characteristics of a molecule, hence they are important for chemical identification of unknown species. With an aim to offer laboratory astrophysical data for the Herschel Space Observatory, Stratospheric Observatory for Infrared Astronomy, and similar future space missions, in this work we report neutral and cation FIR spectroscopy of pentacene (C22H14), a five-ring PAH molecule. We report three IR active modes of cationic pentacene at 53.3, 84.8, and 266 Îźm that may be detectable by space missions such as the SAFARI instrument on board SPICA. In the experiment, pentacene is vaporized from a laser desorption source and cooled by a supersonic argon beam. We have obtained results from two-color resonantly enhanced multiphoton ionization and two-color zero kinetic energy photoelectron (ZEKE) spectroscopy. Several skeletal vibrational modes of the first electronically excited state of the neutral species and those of the cation are assigned, with the aid of ab initio and density functional calculations. Although ZEKE is governed by the Franck-Condon principle different from direct IR absorption or emission, vibronic coupling in the long ribbon-like molecule results in the observation of a few IR active modes. Within the experimental resolution of ~7 cm-1, the frequency values from our calculation agree with the experiment for the cation, but differ for the electronically excited intermediate state. Consequently, modeling of the intensity distribution is difficult and may require explicit inclusion of vibronic interactions.This work is supported by the National Aeronautics and Space Administration under award No. NNX09AC03G. A.L. is supported in part by the NSF grant AST 07-07866, a Spitzer Theory grant and a Herschel Theory grant

    Water Vapor Near-UV Absorption: Laboratory Spectrum, Field Evidence, and Atmospheric Impacts

    Get PDF
    Absorption of solar radiation by water vapor in the near-UV region is a poorly-understood but important issue in atmospheric science. To better understand water vapor near-UV absorption, we constructed a cavity ring-down spectrometer with bandwidth of 5 cm-1 (~0.05 nm) and obtained water vapor absorption cross-sections at 1 nm increments in the 290-350 nm region. Water vapor displays structured absorption over this range with maximum and minimum cross-sections of 8.4×10-25 and 1.6×10-25 cm2/molecule. Major water vapor absorption bands were observed at 293-295, 307-313, 319, 321-322, and 325 nm, with cross-section values higher than 4.0×10-25 cm2/molecule. To obtain further insight into major water vapor absorption bands, we measured water vapor absorption cross-sections at 0.05 nm intervals in the 292-296, 306-314, and 317-326 nm region. Field UV residual spectra not only exhibited increased attenuation at higher atmospheric water vapor loadings but also showed structures suggested by the laboratory water vapor absorption spectrum. Spaceborne UV radiance spectra have spectral structures resembling the differential cross-section spectrum constructed from the laboratory wavelength-dependent water vapor absorption cross-sections presented here. Incorporating water vapor absorption cross-section data into a radiative transfer model yielded an estimated energy budget of 0.26 W/m2 for the standard U.S. atmosphere and 0.76 W/m2 for the tropics. This shows that water vapor near-UV absorption is an important contributor for climate simulation and ozone retrievals

    Pharmacology of MDMA- and Amphetamine-Like New Psychoactive Substances

    Get PDF
    New psychoactive substances (NPS) with amphetamine-, aminoindan-, and benzofuran basic chemical structures have recently emerged for recreational drug use. Detailed information about their psychotropic effects and health risks is often limited. At the same time, it emerged that the pharmacological profiles of these NPS resemble those of amphetamine or 3,4-methylenedioxymethamphetamine (MDMA). Amphetamine-like NPS induce psychostimulation and euphoria mediated predominantly by norepinephrine (NE) and dopamine (DA) transporter (NET and DAT) inhibition and transporter-mediated release of NE and DA, thus showing a more catecholamine-selective profile. MDMA-like NPS frequently induce well-being, empathy, and prosocial effects and have only moderate psychostimulant properties. These MDMA-like substances primarily act by inhibiting the serotonin (5-HT) transporter (SERT) and NET, also inducing 5-HT and NE release. Monoamine receptor interactions vary considerably among amphetamine- and MDMA-like NPS. Clinically, amphetamine- and MDMA-like NPS can induce sympathomimetic toxicity. The aim of this chapter is to review the state of knowledge regarding these substances with a focus on the description of the in vitro pharmacology of selected amphetamine- and MDMA-like NPS. In addition, it is aimed to provide links between pharmacological profiles and in vivo effects and toxicity, which leads to the conclusion that abuse liability for amphetamine-like NPS may be higher than for MDMA-like NPS, but that the risk for developing the life-threatening serotonin syndrome may be increased for MDMA-like NPS

    Velocity Map Imaging Study of Ion–Radical Chemistry: Charge Transfer and Carbon–Carbon Bond Formation in the Reactions of Allyl Radicals with C<sup>+</sup>

    No full text
    We present an experimental and computational study of the dynamics of collisions of ground state carbon cations with allyl radicals, C<sub>3</sub>H<sub>5</sub>, at a collision energy of 2.2 eV. Charge transfer to produce the allyl cation, C<sub>3</sub>H<sub>5</sub><sup>+</sup>, is exoergic by 3.08 eV and proceeds via energy resonance such that the electron transfer occurs without a significant change in nuclear velocities. The products have sufficient energy to undergo the dissociation process C<sub>3</sub>H<sub>5</sub><sup>+</sup> → C<sub>3</sub>H<sub>4</sub><sup>+</sup> + H. Approximately 80% of the reaction products are ascribed to charge transfer, with ∼40% of those products decaying via loss of a hydrogen atom. We also observe products arising from the formation of new carbon–carbon bonds. The experimental velocity space flux distributions for the four-carbon products are symmetric about the centroid of the reactants, providing direct evidence that the products are mediated by formation of a C<sub>4</sub>H<sub>5</sub><sup>+</sup> complex living at least a few rotational periods. The primary four-carbon reaction products are formed by elimination of molecular hydrogen from the C<sub>4</sub>H<sub>5</sub><sup>+</sup> complex. More than 75% of the nascent C<sub>4</sub>H<sub>3</sub><sup>+</sup> products decay by C–H bond cleavage to yield a C<sub>4</sub>H<sub>2</sub><sup>+</sup> species. Quantum chemical calculations at the MP2/6-311+g­(d,p) level of theory support the formation of a nonplanar cyclic C<sub>4</sub>H<sub>5</sub><sup>+</sup> adduct that is produced when the p-orbital containing the unpaired electron on C<sup>+</sup> overlaps with the unpaired spin density on the terminal carbon atoms in allyl. Product formation then occurs by 1,2-elimination of molecular hydrogen from the cyclic intermediate to form a planar cyclic C<sub>4</sub>H<sub>3</sub><sup>+</sup> product. The large rearrangement in geometry as the C<sub>4</sub>H<sub>3</sub><sup>+</sup> products are formed is consistent with high vibrational excitation in that product and supports the observation that the majority of those products decay to form the C<sub>4</sub>H<sub>2</sub><sup>+</sup> species

    Combatting persister cells: The daunting task in post-antibiotics era

    No full text
    Over the years, much attention has been drawn to antibiotic resistance bacteria, but drug inefficacy caused by a subgroup of special phenotypic variants – persisters – has been largely neglected in both scientific and clinical field. Interestingly, this subgroup of phenotypic variants displayed their power of withstanding sufficient antibiotics exposure in a mechanism different from antibiotic resistance. In this review, we summarized the clinical importance of bacterial persisters, the evolutionary link between resistance, tolerance, and persistence, redundant mechanisms of persister formation as well as methods of studying persister cells. In the light of our recent findings of membrane-less organelle aggresome and its important roles in regulating bacterial dormancy depth, we propose an alternative approach for anti-persister therapy. That is, to force a persister into a deeper dormancy state to become a VBNC (viable but non-culturable) cell that is incapable of regrowth. We hope to provide the latest insights on persister studies and call upon more research interest into this field

    Expression Pattern and Function Analysis of AtPPRT1, a Novel Negative Regulator in ABA and Drought Stress Responses in Arabidopsis

    No full text
    Abscisic acid (ABA) plays a fundamental role in plant growth and development, as well as in the responses to abiotic stresses. Previous studies have revealed that many components in ABA and drought stress signaling pathways are ubiquitinated by E3 ligases. In this study, AtPPRT1, a putative C3HC4 zinc-finger ubiquitin E3 ligase, was explored for its role in abiotic stress response in Arabidopsis thaliana. The expression of AtPPRT1 was induced by ABA. In addition, the β-glucuronidase (GUS) gene driven by the AtPPRT1 promoter was more active in the root hair zone and root tips of primary and major lateral roots of young seedlings in the presence of ABA. The assays for seed germination, stomatal aperture, root length, and water deficit demonstrated that the AtPPRT1-overexpressing Arabidopsis was insensitive to ABA and sensitive to drought stress compared with wild-type (WT) plants. The analysis by quantitative real-time PCR (qRT-PCR) revealed that the expression of three stress-inducible genes (AtRAB18, AtERD10, and AtKIN1) were upregulated in the atpprt1 mutant and downregulated in AtPPRT1-overexpressing plants, while two ABA hydrolysis genes (AtCYP707A1 and AtCYP707A3) were downregulated in the atpprt1 mutant and upregulated in AtPPRT1-overexpressing plants in the presence of ABA. AtPPRT1 was localized in the mitochondria. Our findings indicate that AtPPRT1 plays a negative role in ABA and drought stress responses

    AtPPRT1, an E3 Ubiquitin Ligase, Enhances the Thermotolerance in Arabidopsis

    No full text
    E3 ubiquitin ligase plays a vital role in the ubiquitin-mediated heat-related protein degradation pathway. Herein, we report that the expression of AtPPRT1, a C3HC4 zinc-finger ubiquitin E3 ligase gene, was induced by heat stress, and the &beta;-glucuronidase (GUS) gene driven by the AtPPRT1 promoter has shown increased activity after basal and acquired thermotolerance. To further explore the function of AtPPRT1 in heat stress response (HSR), we used the atpprt1 mutant and AtPPRT1-overexpressing lines (OE2 and OE10) to expose in heat shock. In this study, the atpprt1 mutant had a lower germination and survival rate than those of Col-0 when suffered from the heat stress, whereas OEs enhanced basal and acquired thermotolerance in Arabidopsis seedlings. When compared to Col-0 and OEs, loss-of-function in AtPPRT1 resulted in lower chlorophyll retention and higher content of reactive oxygen species (ROS) after heat treatment. Moreover, the transcript levels of AtPPRT1 and several heat-related genes (AtZAT12, AtHSP21 and AtHSFA7a) were upregulated to greater extents in OEs and lower extents in atpprt1 compared to Col-0 after heat treated. Hence, we suggest that AtPPRT1 may act as a positive role in regulating the high temperature by mediating the degradation of unknown target proteins
    corecore