17 research outputs found
Chromatin remodeling agent trichostatin A: a key-factor in the hepatic differentiation of human mesenchymal stem cells derived of adult bone marrow
BACKGROUND: The capability of human mesenchymal stem cells (hMSC) derived of adult bone marrow to undergo in vitro hepatic differentiation was investigated. RESULTS: Exposure of hMSC to a cocktail of hepatogenic factors [(fibroblast growth factor-4 (FGF-4), hepatocyte growth factor (HGF), insulin-transferrin-sodium-selenite (ITS) and dexamethasone)] failed to induce hepatic differentiation. Sequential exposure to these factors (FGF-4, followed by HGF, followed by HGF+ITS+dexamethasone), however, resembling the order of secretion during liver embryogenesis, induced both glycogen-storage and cytokeratin (CK)18 expression. Additional exposure of the cells to trichostatin A (TSA) considerably improved endodermal differentiation, as evidenced by acquisition of an epithelial morphology, chronological expression of hepatic proteins, including hepatocyte-nuclear factor (HNF)-3β, alpha-fetoprotein (AFP), CK18, albumin (ALB), HNF1α, multidrug resistance-associated protein (MRP)2 and CCAAT-enhancer binding protein (C/EBP)α, and functional maturation, i.e. upregulated ALB secretion, urea production and inducible cytochrome P450 (CYP)-dependent activity. CONCLUSION: hMSC are able to undergo mesenchymal-to-epithelial transition. TSA is hereby essential to promote differentiation of hMSC towards functional hepatocyte-like cells
Trichostatin A Enhances Gap Junctional Intercellular Communication in Primary Cultures of Adult Rat Hepatocytes
The effects of histone deacetylase inhibitor Trichostatin A (TSA) on connexin (Cx) expression and gap junctional intercellular communication (GJIC) were investigated in primary cultures of adult rat hepatocytes. GJIC was monitored by using the scrape-loading/dye transfer method. Immunoblotting and immunocytochemistry were used to investigate Cx protein levels and localization. Cx gene expression was studied by means of quantitative reverse transcriptase-polymerase chain reaction. TSA increased Cx32 protein levels and affected negatively the Cx26 protein levels. The latter was preferentially located in the cytosol of cultured cells. TSA also promoted the appearance of Cx43 in the nuclear compartment of primary cultured hepatocytes. Overall, this resulted in enhanced GJIC activity. It is important to note that the time of onset of TSA treatment was crucial for the extent of its outcome and that the effects of TSA on Cx protein levels occurred independently of transcriptional changes. TSA differentially affects Cx proteins in primary rat hepatocyte cultures, suggesting distinct regulation and/or distinct roles of the different Cx species in the control of hepatic homeostasis. TSA enhances GJIC between primary cultured rat hepatocytes, an interesting finding supporting its use to further optimize liver-based in vitro models for pharmacotoxicological purpose
Clinical Remission in Severe Asthma : A Pooled Post hoc Analysis of the Patient Journey with Benralizumab
Funding This study, the Rapid Service Fee, and the Open Access Fee were funded by AstraZeneca (Gaithersburg, MD, USA).Peer reviewedPublisher PD
A Response to : Letter to the Editor Regarding “Clinical Remission in Severe Asthma: A Pooled Post Hoc Analysis of the Patient Journey with Benralizumab”
Funding Information: No funding or sponsorship was received for the publication of this article. Medical writing support was provided by Dan Jackson, Ph.D., CMPP (CiTRUS Health Group), and was funded by AstraZeneca (Cambridge, UK) in accordance with Good Publication Practice (GPP3) guidelines. All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published. Andrew Menzies-Gow developed the outline and content of the response letter and commented on previous versions of the manuscript. All authors read and approved the final manuscript. Andrew Menzies-Gow has attended advisory boards for AstraZeneca, GlaxoSmithKline, Novartis, Sanofi, and Teva; has received speaker fees from AstraZeneca, Novartis, Sanofi, and Teva; has participated in research with AstraZeneca for which his institution has been remunerated and has attended international conferences with Teva; and has had consultancy agreements with AstraZeneca and Sanofi. Flavia L. Hoyte has attended advisory boards for AstraZeneca; has received speaker fees from AstraZeneca and GlaxoSmithKline; and has participated in research sponsored by AstraZeneca, GlaxoSmithKline, Genentech, Teva, Sanofi, and the National Institute of Allergy and Infectious Diseases (NIAID), for which her institution has been remunerated. David B. Price has board membership with AstraZeneca, Boehringer Ingelheim, Chiesi, Mylan, Novartis, Regeneron Pharmaceuticals, Sanofi Genzyme, and Thermofisher; consultancy agreements with Airway Vista Secretariat, AstraZeneca, Boehringer Ingelheim, Chiesi, EPG Communication Holdings Ltd, FIECON Ltd, Fieldwork International, GlaxoSmithKline, Mylan, Mundipharma, Novartis, OM Pharma SA, PeerVoice, Phadia AB, Spirosure Inc, Strategic North Limited, Synapse Research Management Partners S.L., Talos Health Solutions, Theravance, and WebMD Global LLC; grants and unrestricted funding for investigator-initiated studies (conducted through Observational and Pragmatic Research Institute Pte Ltd) from AstraZeneca, Boehringer Ingelheim, Chiesi, Mylan, Novartis, Regeneron Pharmaceuticals, Respiratory Effectiveness Group, Sanofi Genzyme, Theravance, and the UK National Health Service; received payment for lectures/speaking engagements from AstraZeneca, Boehringer Ingelheim, Chiesi, Cipla, GlaxoSmithKline, Kyorin, Mylan, Mundipharma, Novartis, Regeneron Pharmaceuticals, and Sanofi Genzyme; received payment for travel/accommodation/meeting expenses from AstraZeneca, Boehringer Ingelheim, Mundipharma, Mylan, Novartis, and Thermofisher; stock/stock options from AKL Research and Development Ltd, which produces phytopharmaceuticals; ownership of 74% of the social enterprise Optimum Patient Care Ltd (Australia and UK) and 92.61% of Observational and Pragmatic Research Institute Pte Ltd (Singapore); 5% shareholding in Timestamp, which develops adherence monitoring technology; a peer reviewer role for grant committees of the UK Efficacy and Mechanism Evaluation programme and the Health Technology Assessment; and served as an expert witness for GlaxoSmithKline. David Cohen, Peter Barker, James Kreindler, Maria Jison, Chris Brooks, Peggy Papeleu, and Rohit Katial are employees of AstraZeneca. This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors. Data sharing is not applicable to this article as no datasets were generated or analysed for this response letter. Funding Information: Andrew Menzies-Gow has attended advisory boards for AstraZeneca, GlaxoSmithKline, Novartis, Sanofi, and Teva; has received speaker fees from AstraZeneca, Novartis, Sanofi, and Teva; has participated in research with AstraZeneca for which his institution has been remunerated and has attended international conferences with Teva; and has had consultancy agreements with AstraZeneca and Sanofi. Flavia L. Hoyte has attended advisory boards for AstraZeneca; has received speaker fees from AstraZeneca and GlaxoSmithKline; and has participated in research sponsored by AstraZeneca, GlaxoSmithKline, Genentech, Teva, Sanofi, and the National Institute of Allergy and Infectious Diseases (NIAID), for which her institution has been remunerated. David B. Price has board membership with AstraZeneca, Boehringer Ingelheim, Chiesi, Mylan, Novartis, Regeneron Pharmaceuticals, Sanofi Genzyme, and Thermofisher; consultancy agreements with Airway Vista Secretariat, AstraZeneca, Boehringer Ingelheim, Chiesi, EPG Communication Holdings Ltd, FIECON Ltd, Fieldwork International, GlaxoSmithKline, Mylan, Mundipharma, Novartis, OM Pharma SA, PeerVoice, Phadia AB, Spirosure Inc, Strategic North Limited, Synapse Research Management Partners S.L., Talos Health Solutions, Theravance, and WebMD Global LLC; grants and unrestricted funding for investigator-initiated studies (conducted through Observational and Pragmatic Research Institute Pte Ltd) from AstraZeneca, Boehringer Ingelheim, Chiesi, Mylan, Novartis, Regeneron Pharmaceuticals, Respiratory Effectiveness Group, Sanofi Genzyme, Theravance, and the UK National Health Service; received payment for lectures/speaking engagements from AstraZeneca, Boehringer Ingelheim, Chiesi, Cipla, GlaxoSmithKline, Kyorin, Mylan, Mundipharma, Novartis, Regeneron Pharmaceuticals, and Sanofi Genzyme; received payment for travel/accommodation/meeting expenses from AstraZeneca, Boehringer Ingelheim, Mundipharma, Mylan, Novartis, and Thermofisher; stock/stock options from AKL Research and Development Ltd, which produces phytopharmaceuticals; ownership of 74% of the social enterprise Optimum Patient Care Ltd (Australia and UK) and 92.61% of Observational and Pragmatic Research Institute Pte Ltd (Singapore); 5% shareholding in Timestamp, which develops adherence monitoring technology; a peer reviewer role for grant committees of the UK Efficacy and Mechanism Evaluation programme and the Health Technology Assessment; and served as an expert witness for GlaxoSmithKline. David Cohen, Peter Barker, James Kreindler, Maria Jison, Chris Brooks, Peggy Papeleu, and Rohit Katial are employees of AstraZeneca. Funding Information: Medical writing support was provided by Dan Jackson, Ph.D., CMPP (CiTRUS Health Group), and was funded by AstraZeneca (Cambridge, UK) in accordance with Good Publication Practice (GPP3) guidelines.Peer reviewedPublisher PD
Co-culture of primary rat hepatocytes with rat liver epithelial cells enhances interleukin-6-induced acute-phase protein response
Three different primary rat hepatocyte culture methods were compared for their ability to allow the secretion of fibrinogen and albumin under basal and IL-6-stimulated conditions. These culture methods comprised the co-culture of hepatocytes with rat liver epithelial cells (CC-RLEC), a collagen type I sandwich culture (SW) and a conventional primary hepatocyte monolayer culture (ML). Basal albumin secretion was most stable over time in SW. Fibrinogen secretion was induced by IL-6 in all cell culture models. Compared with ML, CC-RLEC showed an almost three-fold higher fibrinogen secretion under both control and IL-6-stimulated conditions. Induction of fibrinogen release by IL-6 was lowest in SW. Albumin secretion was decreased after IL-6 stimulation in both ML and CC-RLEC. Thus, cells growing under the various primary hepatocyte cell culture techniques react differently to IL-6 stimulation with regard to acute-phase protein secretion. CC-RLEC is the preferred method for studying cytokine-mediated induction of acute-phase proteins, because of the pronounced stimulation of fibrinogen secretion upon IL-6 exposure under these conditions
Sequential exposure to cytokines reflecting embryogenesis: the key for in vitro differentiation of adult bone marrow stem cells into functional hepatocyte-like cells
Differentiation of adult bone marrow stem cells (BMSC) into hepatocyte-like cells is commonly performed by continuous exposure to a cytokines-cocktail. Here, it is shown that the differentiation efficacy in vitro can be considerably enhanced by sequential addition of liver-specific factors (fibroblast growth factor-4, hepatocyte growth factor, insulin-transferrin-sodium selenite, and dexamethasone) in a time-dependent order that closely resembles the secretion pattern during in vivo liver embryogenesis. Quantitative RT-PCR analysis and immunocytochemistry showed that, upon sequential exposure to liver-specific factors, different stages of hepatocyte differentiation, as seen during liver embryogenesis, can be mimicked. Indeed, expression of the early hepatocyte markers alpha-fetoprotein and hepatocyte nuclear factor (HNF)3beta decreased as differentiation progressed, whereas levels of the late liver-specific markers albumin (ALB), cytokeratin (CK)18, and HNF1alpha were gradually upregulated. In contrast, cocktail treatment did not significantly alter the expression pattern of the hepatic markers. Moreover, sequentially exposed cells featured highly differentiated hepatic functions, including ALB secretion, glycogen storage, urea production, and inducible cytochrome P450-dependent activity, far more efficiently compared to the cocktail condition. In conclusion, sequential induction of the differentiation process, analogous to in vivo liver development, is crucial for in vitro differentiation of adult rat BMSC into functional hepatocyte-like cells. This model may not only be applicable for in vitro studies of endoderm differentiation but it also provides a "virtually unlimited" source of functional hepatocytes, suitable for preclinical pharmacological research and testing, and cell and organ development.status: publishe
Drug metabolism and pharmacokinetics
In this article, aspects of absorption, distribution, metabolism, and excretion have been described bearing in mind the pathogenesis of allergic diseases and their possible therapeutic opportunities. The importance of the routes of administration of the different therapeutic groups has been emphasized. The classical aspects of drug metabolism and disposition related to oral administration have been reviewed, but special emphasis has been given to intranasal, cutaneous, transdermal, and ocular administration as well as to the absorption and the subsequent bioavailability of drugs. Drug-metabolizing enzymes and transporters present in extrahepatic tissues, such as nasal mucosa and the respiratory tract, have been particularly discussed. As marketed antiallergic drugs include both racemates and enantiomers, aspects of stereoselective absorption, distribution, metabolism, and excretion have been discussed. Finally, a new and promising methodology, microdosing, has been presented, although it has not yet been applied to drugs used in the treatment of allergic diseases