27 research outputs found

    Temperature control. A case history of the Mariner spacecraft

    Get PDF
    Thermal design considerations for Mariner family of interplanetary probe

    Serum metabolite signature predicts the acute onset of diabetes in spontaneously diabetic congenic BB rats

    Get PDF
    The clinical presentation of type 1 diabetes is preceded by a prodrome of beta cell autoimmunity. We probed the short period of subtle metabolic abnormalities, which precede the acute onset of diabetes in the spontaneously diabetic BB rat, by analyzing the serum metabolite profile detected with combined gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS). We found that the metabolite pattern prior to diabetes included 17 metabolites, which differed between individual diabetes prone (DP) BB rats and their age and sex matched diabetes resistant (DR) littermates. As the metabolite signature at the 40 days of age baseline failed to distinguish DP from DR, there was a brief 10-day period after which the diabetes prediction pattern was observed, that includes fatty acids (e.g. oleamide), phospholipids (e.g. phosphocholines) and amino acids (e.g. isoleucine). It is concluded that distinct changes in the serum metabolite pattern predict type 1 diabetes and precede the appearance of insulitis in spontaneously diabetic BB DP rats. This observation should prove useful to dissect mechanisms of type 1 diabetes

    Genetic dissection reveals diabetes loci proximal to the gimap5 lymphopenia gene

    Get PDF
    rats are protected from type 1 diabetes (T1D) by 34 Mb of F344 DNA introgressed proximal to the gimap5 lymphopenia gene. To dissect the genetic factor(s) that confer protection from T1D in the DRF. f/f rat line, DRF. f/f rats were crossed to inbred BBDR or DR. lyp/lyp rats to generate congenic sublines that were genotyped and monitored for T1D, and positional candidate genes were sequenced. All (100%) DR. f/f congenic sublines further refined the RNO4 region 1 interval to ϳ670 kb and region 2 to the 340 kb proximal to gimap5. All congenic DRF. f/f sublines were prone to low-grade pancreatic mononuclear cell infiltration around ducts and vessels, but Ͻ20% of islets in nondiabetic rats showed islet infiltration. Coding sequence analysis revealed TCR V␤ 8E, 12, and 13 as candidate genes in region 1 and znf467 and atp6v0e2 as candidate genes in region 2. Our results show that spontaneous T1D is controlled by at least two genetic loci 7 Mb apart on rat chromosome 4. type 1 diabetes; BB rat; T cell receptor; autoimmune CHARACTERISTICS OF TYPE 1 DIABETES (T1D) in both human and the BioBreeding spontaneously diabetes-prone (BBDP) rat include polyuria, hyperglycemia, ketoacidosis, insulitis, and insulin dependency for life. As in human T1D, islets are infiltrated by mononuclear cells at the time of onset with rapid hyperglycemia due to a complete loss of islet ␤-cells (32). The genetic etiology of human T1D remains complex and although the major histocompatibility complex (MHC) (HLA DQ) on chromosome 6 accounts for ϳ40% of T1D risk, the number of non-HLA genetic factors is increasing steadily (2, 7). The BB rat offers a powerful model to dissect both genetic contributions and mechanisms by which immunemediated beta cell killing induces T1D (3, 4, 15, 17-21, 27, 28, 46). As in humans, the major genetic determinant of susceptibility in the BB rat is the MHC (Iddm1) on rat chromosome (RNO) 20. The class II MHC locus RT1B/D. u/u ), an ortholog of human HLA DQ (9), is necessary but not sufficient for T1D in the BBDP rat and other RT1. u/u -related rat strains with spontaneous (24, 47) or induced T1D (8, 43). In BBDP, a null mutation in the gimap5 gene (lyp; Iddm2) on RNO4 (14, 27) causes lymphopenia and is tightly linked to spontaneous T1D development. The DR. lyp/lyp rat with 2 Mb of BBDP DNA encompassing gimap5 introgressed into the genome of related BBDR rats (BioBreeding resistant to spontaneous T1D) are also 100% lymphopenic and 100% spontaneously diabetic (11). With complete T1D penetrance and tight regulation of onset, the congenic DR. lyp/lyp rat line offers distinct advantages in identification of genes responsible for disease progression. It is possible to induce T1D in BBDR rats (32) and related RT1 u/u rats (8) by administration of polyinosinic: polycytidylic acid (poly I:C, an activator of innate immunity), the T reg depleting cytotoxic DS4.23 anti-ART2.1 (formerly RT6) monoclonal antibody or by viral infection (34). This indicates that the BBDR has an underlying genetic susceptibility to T1D. In crosses between WF and either BBDP or BBDR rats, a quantitative trait locus (QTL) important for induced T1D (Iddm14, previously designated Iddm4) was mapped to RNO4 (6, Interestingly, F344 DNA introgressed between D4Rat253 and D4Rhw6 into the congenic DR. lyp/lyp genetic background resulted in a lymphopenic but nondiabetic rat (designated DRF. f/f ) (11). Protection from T1D in the DRF. f/f congenic rat line led us to conclude that spontaneous T1D in the BB rat is controlled, in part, by a diabetogenic factor(s) independent of the gimap5 mutation (76.84 Mb) on RNO4. This congenic interval is encompassed within Iddm14, raising the possibility that the Iddm14 locus could be required for both spontaneous and induced T1D in the BB rat. The aim of this study was to cross the DRF. f/f rat to BBDR and DR. lyp/lyp rats and produce recombinant sublines that could be assessed for both lymphopenia and diabetes and to estimate the number of independent genes on RNO4 that control spontaneous T1D

    RHOBURN: A NUCLEAR REACTOR CODE FOR CALCULATING BURNUP AND OPERATIONAL PARAMETERS FOR THE LPTR

    No full text
    The RHOBURN program that determines various parameters for the Livermore Pool Type Reactor using a matrix of 840 cells, stored in two-dimensional form, is described. The code calculates the burnup of U/sup 235/on the basis of the megawatt days run during a fuel cycle and as a function of the neutron flux and fuel inventory in each of the 840 homogeneous cells in the reactor core. The thermal utilization and various other parameters for each core, and values for calculating the reactivity change between different cores can also be obtained. RHOBURN is written in Fortran for the IBM 7094, to be run under monitor control. The program listing and sample input and output are included. (auth

    The impact of alcohol fuels on urban air pollution: methanol photochemistry study.

    No full text
    Energy Department, Office of Vehicle and Engine Research and Development, Washington, D.C.Mode of access: Internet.Author corporate affiliation: Santa Clara University, Calif.Subject code: BQNSubject code: SDE
    corecore