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Abstract   

The clinical presentation of type 1 diabetes is preceded by a prodrome of beta 

cell autoimmunity. We probed the short period of subtle metabolic 

abnormalities, which precede the acute onset of diabetes in the spontaneously 

diabetic BB rat by analyzing the serum metabolite profile detected with 

combined gas chromatography/mass spectrometry (GC/MS) and liquid 

chromatography/mass spectrometry (LC/MS). We found that the metabolite 

pattern prior to diabetes included 17 metabolites, which differed between 

individual diabetes prone (DP) BB rats and their age and sex matched diabetes 

resistant (DR) littermates.  As the metabolite signature at the 40 days of age 

baseline failed to distinguish DP from DR, there was a brief ten-day period after 

which the diabetes prediction pattern was observed, that includes fatty acids (e.g. 

oleamide), phospholipids (e.g phosphocholines) and amino acids (e.g. isoleucine). 

It is concluded that distinct changes in the serum metabolite pattern predict type 

1 diabetes and precede the appearance of insulitis in spontaneously diabetic BB 

DP rats. This observation should prove useful to dissect mechanisms of type 1 

diabetes. 

 

Key words: type 1 diabetes; metabolomics; OPLS-DA; dynamic modeling
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Type 1 diabetes (T1D) is one of the most common chronic diseases among children 

and young adults. The number of patients diagnosed every year steadily increases 

while age of onset decreases (Gillespie et al., 2004, Gale, 2002). T1D in humans is a 

well-defined "two step" disease affecting children at genetic risk primarily conferred 

by HLA-DQ on chromosome 6 (Onengut-Gumuscu and Concannon, 2006, Rich et al., 

2009). The first step is the appearance of islet autoimmunity marked by 

autoantibodies against one or several of the autoantigens, GAD65, insulin, IA-2 or 

ZnT8 (for a review see (Pihoker et al., 2005, Wenzlau et al., 2007). Recently serum 

metabolite signatures were reported in children at genetic risk for T1D demonstrating 

reduced serum levels of succinic acid and phosphatidylcholine at birth, increased 

levels of lysophosphatidylcholine months before seroconversion to islet 

autoantibodies but that all changes were normalized after the seroconversion (Oresic 

et al., 2008). In some of these children, serum samples were available as close as three 

months prior to the presentation of their diabetes. Studies in spontaneously diabetic 

animals would therefore be useful to further analyze the mechanisms by which serum 

metabolites change during the days prior to the onset of diabetes.  

The diabetes prone (DP) congenic DP DR.lyp BioBreeding (BB) rats (Fuller et al., 

2006, Fuller et al., 2009) develop diabetes in a manner comparable to human T1D. 

Spontaneous diabetes occurs in both DP males and females at the time of puberty, 

which is also associated with the peak incidence of T1D in humans. As in humans, the 

DP BB rats have classic T1D symptoms including weight loss, polydipsia, polyuria 

and ketoacidosis as well as insulitis at the time of clinical onset (reviewed in Mordes 

et al. (Mordes et al., 2004). The MHC RT1Bu/u, the paralogue of human HLA-DQ 

confers the primary genetic susceptibility (Jacob et al., 1992). The spontaneous BB rat 
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diabetes is linked to a frame-shift mutation in the gene for the anti-apoptotic protein, 

Gimap5, a null allele resulting in lymphopenia (lyp) from birth (MacMurray et al., 

2002, Hornum et al., 2002).  Diabetes develops at 50-80 days of age in all congenic 

DR.lyp/lyp BB rats while both DR.lyp/+ (DR1) and DR.+/+ (DR2) littermates remain 

diabetes resistant (DR) (Fuller et al., 2006, Fuller et al., 2009).  The first step in BB 

rat diabetes development is signs that the beta cells fail in function. Initially, islet 

autoantibodies were observed but in outbred BB rats only (Baekkeskov et al., 1984). 

In early congenic DR.lyp rats, pre-diabetic DP BB rats displayed reduced weight gain 

up to nine days before diabetes (Markholst et al., 1993). We hypothesized therefore 

that an autoimmune attack on the pancreatic β cells might be marked by subtle 

metabolic abnormalities. In support of this hypothesis, we recently showed that pre-

diabetic DP rats failed to maintain core body temperature (Akesson et al., 2007) and 

that diabetes onset was heralded by a progressive shift from carbohydrate metabolism 

to lipid oxidation (Akesson et al., 2008).  It can be suggested that these pre-diabetic 

metabolic changes, which preceded beta cell destruction and insulitis (Bieg et al., 

2000), might be reflected in an altered metabolite profile in the peripheral blood.  

In order to test the hypothesis that metabolic changes in serum predict diabetes 

we followed with repeat serum metabolomics analyses by LC/MS (Bruce et al., 2008)  

and GC/MS (A et al., 2005)  combined with statistical dynamic modeling (Trygg et 

al., 2007, Trygg and Lundstedt, 2007, Stenlund et al., 2009), congenic DP BB rats 

along with their DR1 and DR2 littermates from 40 days of age until the rapid onset of 

diabetes. In contrast to Oresic et al. (2008), our study is specifically addressing to 

what extent the acute onset of diabetes in the BB rat is preceded by changes in the 

serum metabolite profile that would distinguish the pre-diabetic DP from the DR BB 

rats.  
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2 Materials and Methods 

2.1 Reference compounds, stable isotope-labelled internal standards and other 

reagents.  

The reference compounds were purchased from Sigma (St. Louis. MO, USA), Merck 

(Darmstadt, Germany), Aldrich (Steinhein, Germany) and Serva (Heidelberg, 

Germany). The compounds and reagents were all of analytical grade except where 

stated otherwise. The stable-isotope-labeled internal standard compounds (IS), [13C5]-

proline, [2H4]-succinic acid, [13C5, 
15N]-glutamic acid, [1,2,3-13C3]-myristic acid, 

[2H7]-cholesterol, [13C12]-sucrose, [13C4]-palmitic  acid and [2H4]-butane-diamine 

2HCl from Campro (Veenendaal, the Netherlands) and [2H6]-salicylic acid from Icon 

(Summit, NJ, USA).  N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) plus 1% 

trimethylchlorosilane (TMCS) and pyridine (silylation grade) were purchased from 

Pierce Chemical Company, USA. 

 

2.2 Congenic BB rats. 

The parental DR.lyp (BBDR.BBDP.lyp/lyp) line used in the present study was derived 

from animals with two independent recombination events developed from our 

previously described introgression of lymphopenia by cyclic cross-intercross breeding 

of BBDP with BBDR (Bieg et al., 2000). The first recombination event was flanked 

by simple sequence–length polymorphism (SSLP) marker D4Rhw10 and the second 

flanked by the SSLP marker D4Rhw11. These DR rats thus have a 2-Mb fragment of 

DP on chromosome 4 (Fuller et al., 2006, Fuller et al., 2009). The remainder of the 

genome represents BBDR as verified by genome-wide scanning (Fuller et al., 2006). 

The BBDR rats used to secure introgression of the recombination have been kept in 
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sister/brother breeding since 1983. 

2.3 Housing 

All animals were kept and bred in specific pathogen free (SPF) environment 

(http://depts.washington.edu/compmed/rodenthealth/index.html). The rats were given 

free access to food and water, on a 12-h light, 12-h dark cycle. All experiments were 

approved by the IACUC at University of Washington, Seattle, WA.  

 

2.4 Genotyping 

Five mm tail snips were obtained from the rats between 25 and 30 days of age and 

DNA was isolated using a phenol/chloroform protocol as previously described (Fuller 

et al., 2006). PCR reactions were performed in 10 l master mix containing 10X 

reaction buffer, 50 ng isolated DNA (2 ng l-1), 2 mmol L-1  MgCl2, 0.2 mmol L-1  

dNTPs, 0.05 mol L-1 M IRDye 700 labelled primer, 1 mol L-1  unlabeled reverse 

primer, 0.5 U Taq Polymerase and 0,04 mg ml-1 BSA. All samples were then 

subjected to one hold of 95C for 5 min prior to 30 cycles of amplification  (95C for 

20 s, 60C for 20 s and 72C for 30 s), which was followed by one final hold of 72C 

for 3 min. Samples were kept at 4C until use. PCR products were diluted to 25% 

with STOP solution and analysed using a NEN Global IR2 DNA Analyser System 

(Model 4200S-2) using 6.5% gel matrix.  

 

2.5 Phenotyping 

Two drops of tail vein blood was diluted in Gey’s solution and subjected to FACS 

analysis as described previously (Fuller et al., 2009). Cells were re-suspended in 100 

l FITC-labelled R73, diluted 1:400 in 4% BSA-PBS. The cells were incubated in the 

dark for 10 min and then washed by centrifugation in 100 l BSA-PBS. The 
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supernatant was removed and the cells were re-suspended in 200 l PBS and 

transferred to FACS-tubes to be analysed the same day. The frequency of TCR-

positive T cells among mononuclear cells was determined on an EPICS Elite Flow 

Cytometer (Beckman Coulter, Fullerton, CA).  

 

2.6 Diabetes diagnosis. 

Starting at 40 days of age, all rats were weighed daily (Sartorious, Edgewood, NY) 

and blood glucose (Acsencia Elite XL, Bayer, Leverkusen, Germany) was tested if the 

rat did not gain weight as compared to the previous day. Diabetes was diagnosed 

when blood glucose exceeded 11.1 mmol L-1 (200 mg dL-1) for two consecutive 

measurements the same day (AM and PM blood glucose) or in the morning the 

following day.  

 

2.7 Study design. 

Two series of experiments were carried out. In the first study, a tail vein blood sample 

(100-500 µl blood) was obtained mid-day from 16 DP, 11 DR1, 7 DR2 rats at 40 days 

of age.  The 46 rats were from seven different litters with 7-13 rats in each litter, the 

average being nine rats.  In the second series, a total of 21 rats were followed from 40 

days of age until the onset of diabetes. In each litter of seven, 1-2 rats of each DR.lyp 

genotype were selected to be followed for a tail vein blood sample every five days. 

The DP rats (n=4) were followed until the onset of hyperglycemia and diagnosis of 

diabetes. The DR1 (n=4) and DR2 (n=4) rats were followed in parallel to each DP 

littermate.  
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2.8 Extraction of metabolites from rat serum 

Extraction of metabolites from serum samples was essentially performed as described 

in A et al. (A et al., 2005). A total of 630 µl of MeOH:H2O (9:1; v/v) including 

internal standards was added to 70 µl of serum. The solution was vortex mixed for 10 

sec, kept on ice for 10 min, and then vigorously extracted at a frequency of 30 Hz for 

3 min using a MM301 vibration Mill (Retsch GmbH & Co. KG, Haan, Germany). 

After 120 min on ice, the samples were centrifuged at 19 600 g for 10 min at 4°C and 

200 l of the supernatant was transferred to a GC vial, while  200 l was transferred 

to a LC/MS  and a GC/MS vial and evaporated to dryness. 

 

2.9 GC/MS analysis. 

 Prior GC/MS analysis the samples were derivatised by shaking for 10 min at 5°C 

with 30 µL of methoxyamine hydrochloride (15 mg mL-1) in pyridine and then 

incubating them for 16 h at room temperature. The samples were next 

trimethylsilylated by adding 30 µL of MSTFA with 1% TMCS and incubating them 

for 1 h at room temperature. After silylation, 30 µL of heptane (containing 0.5 g 

methyl stearate as internal standard) was added.  

The derivatised sample (1 l) was injected split less by an Agilent 7683 Series 

Autosampler (Agilent, Atlanta; GA, USA) into an Agilent 6980 GC equipped with a 

10 m×0.18 mm ID, fused silica capillary column chemically bonded with 0.18 m 

DB5-MS stationary phase (J&W Scientific, Folsom, CA, USA). The injector 

temperature was set at 270°C. Helium was used as carrier gas at a constant flow rate 

of 1 ml/min through the column. For every analysis, the purge time was set to 60s at a 

purge flow rate of 20 ml min-1 and an equilibration time of 1 min.  The column 
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temperature was initially kept at 70°C for 2 min, then increased from 70 to 320 °C at 

40 °C min-1, where it was held for 2 min. The column effluent was introduced into the 

ion source of a Pegasus III TOFMS (Leco Corp., St Joseph, MI, USA). The transfer 

line temperature was set at 250°C and ion source temperature at 200°C.  Ions were 

generated by a 70 eV electron beam at a current of 2.0 mA. Masses were acquired 

from m/z 50 to 800 at a rate of 30 spectra s-1, and the acceleration voltage was turned 

on after a solvent delay of 150 s.  

 

2.10 LC/MS analysis 

Chromatography was performed on a Waters Acquity™ system, equipped with 

column oven, coupled to a Waters LCT premier time-of-flight (Tof) mass 

spectrometer.  An aliquot of the extracted sample was injected onto a 2.1 x 100 mm, 

1.7 µm C8 UPLC™ column.  The gradient elution buffers were A (H2O, 0.1% formic 

acid) and B (acetonitrile, 0.1% formic acid), and the flow-rate was 500 µl min-1.  The 

column was eluted with a linear gradient consisted of 1-20% B over 0-4 min, 20-40% 

of B 4-6 min, 40-95% B 6-9 min, the composition was held at 95% B for 4.5 min, and 

returned to 1% B at 14.50 min, the composition was kept at 1% B for a further 4.5 

min before the next injection. 

The mobile phase was introduced into an electrospray ion source. The source 

temperature was 120ºC with a cone gas flow of 10 L hr-1, a desolvation temperature of 

320ºC and a nebulization gas flow of 600 L hr-1.  The capillary voltage was set at 3 

kV for positive ion mode, with a cone voltage of 0 V, a data acquisition rate of 0.1 s, 

an interscan delay of 0.1 s, with dynamic range enhancement (DRE) mode activated.  

Leucine enkephalin was employed as the lockmass compound for accurate mass 

measurements, infused straight into the MS at a concentration of 400 pg µL-1 (in 
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50:50 ACN:water) at a flow rate of 20 µL min-1.  The normal lockmass in the DRE 

mode was the positive ion 2nd C13 peak of leucine enkephalin at 558.2829, and the 

extended lockmass peak was the normal positive ion peak observed at 556.2771.  All 

mass spectral data were acquired in the centroid mode, 50 - 1000 m/z, with a data 

threshold value set to 3. “PseudoMSMS” analysis was performed by increasing the 

aperture 1 voltage from 5 to 45V. 

 

 

2.11 Data processing of MS-data  

All non-processed MS-files from the metabolic analysis were exported from the 

ChromaTOF (GC/MS; (Leco Corp., St Joseph, MI, USA) or MassLynx (LC/MS; 

Waters, Manchester, UK) software in NetCDF format to MATLAB software 7.0 

(Mathworks, Natick, MA, USA), in which all data pre-treatment procedures, such as 

base-line correction, chromatogram alignment, time windows setting and Hierarchical 

Multivariate Curve Resolution (H-MCR) were performed using custom scripts 

according to Jonsson et al. (Jonsson et al., 2005, Jonsson et al., 2006). All manual 

integrations were performed using ChromaTOF 2.32 software, QuanLynx or 

custom scripts. In total were approx. 300 and 120 putative metabolites detected by 

GC/MS and LC/MS, respectively. 

 

2.12 Mass spectra analysis 

Metabolites from the GC/MS analysis were identified by comparing retention indices 

and mass spectra with data in retention index and mass spectra libraries (Schauer et 

al., 2005). Metabolites from the LC/MS analysis were identified by comparing 

retention time and mass spectra with data in the in-house retention time and mass 



 11 

spectra library. Metabolites not available in the in-house library were identified or 

classified by determining the elemental composition from measured exact mass, 

followed by database searches (ChemSpider, http://www.chemspider.com; METLIN, 

http://metlin.scripps.edu; Lipid MAPS, http://www.lipidmaps.org/) and spectra 

interpretation of “PseudoMSMS analysis”. 

 

2.13 Statistical analysis  

Principal component analysis (PCA) (Jackson, 1991) is frequently used to get an 

overview of a data table X, detect clusters and identify anomalies and outliers in the 

data. In metabolomics, the data table X [NxK] , where N defines the number rows or 

metabolite profiles, and K the number of quantified variables or metabolites is 

compressed into a few new “latent” variables, called scores T. The loading matrix P 

describes the influence of each of the original variables in the construction of the 

scores T: 

    (1) 

Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) 

OPLS-DA (Bylesjö et al., 2007, Trygg and Wold, 2002) was used for Prediction of 

Class (PoC) parameter prediction. In OPLS-DA, all metabolic profiles predicted by 

the model (ŷ) are assigned class-specific values of 1 or 0 by using a threshold. The 

threshold is determined by the number of samples in each class. For class balanced 

models, the threshold is 0.5. Further details of the OPLS-DA algorithm have been 

described previously (Bylesjö et al., 2007).  

In OPLS the data are modeled by the model: 
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    (2a) 

 (2b) 

In OPLS-DA, the predictive component loading provides a direct measure of the 

influence of each variable. In metabolomics studies, the correlation scaled loading 

values reveal the most discriminatory variables. Correlation scaled p(corr) loading 

values are calculated as: 

    (3) 

Xi represents the ith variable in the X matrix (quantified metabolites).  

All multivariate modeling was done in Simca-P+ version 12 (Umetrics, Umeå, 

Sweden). 

The amount of explained variance in a model was calculated as: 

   (4) 

 being the modeled variation of X. Model complexity was determined using leave-

one-out cross-validation (Wold, 1978a). 

Dynamic modelling (Trygg et al., 2007, Trygg and Lundstedt, 2007, Stenlund et al., 

2009) is a methodology that makes it possible to evaluate and handle different types 

of variations such as individual differences in metabolic kinetics, circadian rhythm, 

fast and slow responders and is also capable of handling sparse and unevenly sampled 

time series.   
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3 Results 

Our investigation was based on a longitudinal study design of DP, DR1 and DR2 BB 

rats (Fig. 1a). The heterozygous breeding ensures that the offspring of 25% DP, 50% 

DR1 and 25% DR2 are born to non-diabetic parents. All rats were followed from 40 

days of age until diabetes occurred in the DP BB rats (Fig. 1b) when the littermates 

kept in the same cage were killed in parallel. All DP rats developed acute 

hyperglycemia within 24 hours and were diagnosed when morning serum sample was 

obtained (Fig. 1b).  The growth of DP BB rats was indistinguishable from DR1 and 

DR2 rats until the day of diabetes onset (Fig. 1c) when the DP rats rapidly started to 

lose weight unless given insulin (data not shown). The age at onset has in our 

previous studies varied between about 45 to 70 days of age (Fig. 1d).  The unique and 

reproducible spontaneous onset of diabetes made it possible to test the hypothesis that 

a serum metabolite signature would predict acute diabetes in the DP and thereby 

distinguish these rats from the DR BB rats.  

Our longitudinal study design included a subset of twelve (12) rats where serum 

samples from DP, DR1 and DR2 rats were first collected (Fig. 1e, X) around 40 days 

of age until DP rats was diagnosed for diabetes ( Fig. 1e, red circles). Serum samples 

were collected simultaneously for rats housed in the same cage. 

 

3.1 Comparison of serum profiles using PCA and dynamic modeling 

   

The serum samples subjected to both GC/MS and LC/MS metabolomics analysis 

revealed a large number of quantified putative metabolites.  We first analyzed the 

LC/MS data from all DP and DR samples at the 39-40 days of age baseline using 
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principal component analysis (PCA) (Jackson, 1991) (Supplementary Fig. 1). The 

PCA scores plot (t1-t2) of these analyses in normoglycemic DP (n=16), DR1 (n=7) 

and DR2 (n=12) rats revealed no systematic difference in the serum metabolite 

profiles between DP and DR rats. We then used PCA to model the temporal metabolic 

changes in the DP (n=4), DR1 (n=4) and DR2 (n=4) rats over all 66 samples (Fig. 2a). 

Each point in the scatter plot corresponds to a single sample, colored by genotype and 

labeled by its individual number (1-4) in that genotype class. Points that lie in close 

proximity are more similar compared to points that lie far from each other. For clarity, 

the t1-t2 temporal score values for each individual rat are also shown in a separate 

scatter plot. Inter-individual variations were noted between all twelve rats since they 

were found to be individually clustered at different areas of the scores plot (Fig. 2b).   

We therefore used PCA to map the metabolic trajectory for each individual rat in 

accordance with the dynamic modeling approach (Trygg et al., 2007, Trygg and 

Lundstedt, 2007, Stenlund et al., 2009). This means that each rat is used as its own 

reference, allowing subtle changes, specific to each individual rat over time to be 

examined. We then determined the multivariate temporal metabolic change between 

the two sampling points immediately preceding the onset of diabetes (linked by a 

horizontal line between red circles in Fig. 1e). This corresponds to the relative 

metabolic changes, between animal ages (days) 50-55 for all DP (n=4) rats, except the 

DP-2 rat and their age matched controls, DR1 (n=4) and DR2 (n=4), respectively. We 

could thereafter test our hypothesis that subtle distinct serum metabolite changes 

predict diabetes in the individual DP rat using orthogonal projections to latent 

structures discriminant analysis (OPLS-DA).  

 

3.2 OPLS-DA to reveal the metabolite signature that distinguishes pre-diabetic DP 
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from DR rats 

The metabolic profiles were predicted using OPLS-DA (Fig. 3a, b). The resulting 

OPLS-DA Prediction of Class (PoC) parameter based on leave-one-out cross-

validated predictions (Wold, 1978b) revealed a metabolite signature, based on 17 

identified or classified metabolites detected by LC/MS that was sufficient to clearly 

distinguish pre-diabetic DP from DR rats (sensitivity=100%, specificity=75 %) (Fig. 

3a).  The data in Figure 3b show the OPLS-DA correlation scaled loading values of 

these 17 metabolites that differentiated the pre-diabetic DP rats compared to the age 

matched DR rats. Six metabolites were increased and eleven decreased in the DP rats 

prior to any onset of diabetes. Prior to diabetes onset, all four DP rats had modulated 

concentrations of fatty acid derivatives (e.g. oleamide), phospholipids (e.g 

phosphocholines) or amino acids (e.g. isoleucine) compared to their diabetes-resistant 

DR1 and DR2 littermates. The versatility of our metabolomics approach to predict 

diabetes in the DP rats was further evident from the metabolites detected by GC/MS 

(Fig. 3c). Heat maps are used to illustrate relative metabolic changes prior to diabetes 

onset for amino acids, carbohydrates, organic acids, lipids and other diverse 

compounds (Fig. 3c).  It is noted that the differences in isoleucine, certain lipids and 

fatty acids were independently detected by both LC/MS and GC/MS.  

 

4 Discussion 

Type 1 diabetes is defined according to current criteria solely by an increase in fasting 

plasma glucose above 11.1 mmol L-1 (Genuth et al., 2003).  This single parameter 

definition or threshold level indicating a deviation from normal has been used for 

more than 90 years (Genuth et al., 2003). Our study in the well-characterized 

spontaneous diabetes of the BB rat has the advantage that the presentation of diabetes 
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to fulfill these criteria is acute as the 11.1 mmol L-1 is passed and much higher 

glucose concentrations reached within 24 hours. As the blood samples were obtained 

in the 40-50 days of age time span before any DP rat had developed diabetes, our data 

demonstrate that the glucose single parameter abnormality was preceded by 

significant alterations of several serum metabolites.  This is important as this 

observation alone suggest that there may be other insulin-sensitive metabolic 

pathways that are more sensitive to a reduction in plasma insulin than the insulin-

dependent uptake of glucose primarily in the liver. Based on the LC/MS analysis a 

predictive metabolite profile composed of 17 metabolites with decreased or increased 

levels distinguished DP from DR rats. These abnormalities in the DP rats appear 

spontaneously between 40 and 50 days of age.  As the 40 days of age baseline 

metabolite measurements failed to distinguish DP from DR rats we conclude therefore 

that age and lymphopenia in the DP rats is not the explanation of the ability of our 

metabolomics approach to predict DP. Hence, the major finding in our study was that 

there are asymptomatic disease processes causing an increase in some and a decrease 

other metabolites resulting in a clear and easily detectable metabolite pattern that is 

unique to the DP rats which are about to develop diabetes. Our findings of major 

metabolite changes in asymptomatic pre-diabetic DP rats therefore surpass the 

expected major alterations including hyperglycemia, which were documented at the 

time of clinical onset of diabetes in the DP rats (Supplementary Fig. 2).   

 

In children who developed T1D later in life it was reported that succinic acid and 

phosphatidylcholine were reduced already in the cord blood (Oresic et al., 2008). 

During follow up, increased levels of lysophosphatidylcholine were detected months 

before seroconversion to islet autoantibodies (Oresic et al., 2008). The metabolic 
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disturbance was partially normalized after seroconversion, which did not allow these 

authors to detect a metabolic profile that would predict the clinical onset of diabetes 

(Oresic et al., 2008). It is well accepted that the number of islet autoantibodies 

increases the risk for diabetes but does not tell the time to clinical onset (DPT-1, 

2002, Sosenko et al., 2008). In our congenic BB rats, the metabolic pattern is similar 

to children who progressed to islet autoimmunity (Oresic et al., 2008). However, in 

the BB rat  the progression to clinical onset is genetically controlled and simplified as 

there is no complicating phase of preclinical islet autoimmunity as in humans 

(Pihoker et al., 2005) or peri-insulitis as in the spontaneously diabetic NOD mouse 

(Mordes et al., 2004).  The evaluation of metabolites in our BB rat serum samples was 

complicated by a high degree of normal physiological variation, such as individual 

differences in metabolic dynamics and individual responses to disease progression. 

This also implies that the often used modeling approach to compare controls with 

disease is not optimal as individual dynamics are not taken into account. For this 

reason, our study design was laid out as sequential samples of each individual rat over 

an appropriate time course to capture individual metabolic changes over time. This 

design allowed us to use each rat as its own control.  

 

The second major finding in our investigation was therefore that according to LC/MS 

analysis, the changes in levels of only 17 identified or classified metabolites were 

sufficient to predict DP from DR rats. The additional identification of serum 

metabolites by GC/MS confirmed the findings by LC/MS but also extended the 

change in the serum metabolome that further underlined the dramatic changes that 

may take place in the DP BB rat metabolism prior to diabetes. The recent 

investigation of children followed from birth until onset of diabetes did for obvious 
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reasons not include serum samples obtained immediately prior to the clinical onset of 

diabetes (Oresic et al., 2008). As it is currently not possible to predict the clinical 

onset of childhood type 1 diabetes, the study schedule with a visit every three months 

enabled sampling at least as close as 3 months prior to onset (Oresic et al., 2008).   At 

this point in time, no other significant differences but diminished phospholipids were 

reported (Oresic et al., 2008). However, it cannot be excluded that additional changes 

in metabolite pattern may emerge as the beta cell function deteriorates prior to onset. 

Our observation of significant alterations of several serum metabolites, to a degree 

consistent with the findings at 3 months prior to onset (Oresic et al., 2008), support 

the notion that there are subclinical disturbances in metabolism that precede the onset 

of diabetes caused by a rapid and specific loss of pancreatic islet beta cells.  

The change in the serum metabolite profile prior to the acute onset of diabetes support 

our hypothesis that subtle metabolic changes precede the beta cell killing in DP-rats. 

We speculate that the previously reported increased in core body temperature 

(Akesson et al., 2007) and the progressive shift towards lipid oxidation relative 

carbohydrate metabolism (Akesson et al., 2008) might coincide with the observed 

change in the serum metabolite profile. Indeed, the long-chain fatty acid amide, 

oleamide has been shown to regulate several physiological functions, including an 

ability to decrease body core temperature. Oleamide does not have a designated 

receptor, but most likely act via cannabinoid receptors (CB-1 and CB-2), GABA A 

receptors and several serotonin receptors. The impact of oleamide and other bioactive 

amides on diabetes development is largely unknown but intriguing, as several of the 

metabolites in our report stem from the biosynthesis or breakdown of such molecules. 

It is important to note in this regard that both cannabinoid- and serotonin receptors are 

involved in the control of insulin secretion. Further, CB1 receptors have been 
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proposed to contribute to insulin resistance in human skeletal muscle cells (Eckardt et 

al., 2009) and in mouse adipocytes (D'Eon et al., 2008). Further studies will be needed 

to uncover the mechanism by which a decreasing beta cell mass prior to the clinical 

onset of diabetes may induce a change in the output of specific phospholipids.  

 

The increased lipid oxidation prior to the onset of hyperglycemia (Akesson et al., 

2008) is expected to increase serum free fatty acids.  Our metabolomics data 

suggested a complex pattern of altered free fatty acid levels. Furthermore, it was of 

interest to note that a diacylglycerol was decreased and contributed to the model that 

distinguished DR from DP rats.  The reduction in the diacylglycerol may reflect an 

increase in lipid oxidation as the demand for fatty acid synthesis is increasing and 

more fatty acids are needed for energy metabolism since the relative availability of 

insulin is decreasing. What are the consequences for serum levels of metabolites when 

lipid oxidation is increased? The relative reduction of insulin without altering blood 

glucose levels may contribute to a relative insulinopenia in the liver. The hepatocyte 

may respond with an altered metabolism to include an increase in lipid oxidation that 

may alter serum levels of not only lipids but also of amino acids.   

   

The mechanisms of the rapid beta cell killing in the DP BB rat are not fully 

understood. While the strong linkage to MHC RT1B u/u is suggestive of T cell 

mediated killing (Mordes et al., 2004) recent analysis of the gene expression profile in 

both the pancreatic islets and lymphnodes draining the pancreas suggest that it cannot 

be excluded that mast cells may also contribute (Geoffrey et al., 2006, Hessner et al., 

2004).   It has previously been shown that the islets of Langerhans are not infiltrated 

with mononuclear cells until the time of onset but that there is subtle infiltration of the 
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pancreas by e.g. dendritic cells prior to hyperglycemia (Bieg et al., 2000). We 

therefore speculate that the serum metabolite signature may reflect spontaneous 

processes that eventually trigger the cellular killing of the pancreatic islet beta cells. 

Alternatively, it cannot be excluded that a slowly progressive loss of beta cells is 

resulting in a relative reduction in the pancreatic output of insulin to the liver.  As the 

liver is extracting 80% of the insulin secreted from the pancreas we speculate that the 

hepatocytes are the first to experience the relative reduction in insulin.  

 

 The present findings provide the possibility to predict the prediabetic state not only in 

the DP rat but also human subjects (Oresic et al., 2008). There is evidence to suggest 

that gestational events may increase the risk for T1D in genetically susceptible 

children (Lynch et al., 2008, Larsson et al., 2007, Larsson et al., 2008).  In 56 children 

who progressed to T1D serum succinic acid and phosphatidyl choline were reduced 

already at birth (Oresic et al., 2008). Seroconversion to islet autoantibodies long 

before the clinical onset is well documented in several studies including BABY DIAB 

(Bonifacio et al., 2004), DIPP (Nejentsev et al., 1999), DAISY (Lamb et al., 2009), 

DiPiS (Larsson et al., 2008) and TEDDY(TEDDY-Study-Group, 2008). The latter 

study in particular has the statistical power and frequent sampling (every three months 

until 4 years of age) to detect metabolite profiles that might predict step one, step two, 

or both of the disease.  It is therefore of interest that both humans (Oresic et al., 2008) 

and our DP BB rats showed changes in phosphatidyl choline associated with diabetes 

risk.  A direct comparison between human T1D and BB rat is complicated by the fact 

that their etiologies are vastly different. Nonetheless, the potential similarities in 

metabolomic findings suggest that the BB rat may be useful to establish cross-species 

markers that would facilitate interpretation of data from preclinical studies in BB rats, 
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aiming to prevent diabetes. 

5 Concluding remarks 

Our study demonstrates that the combined use of metabolomics (GC/MS and LC/MS) 

and statistical modeling based on the individual rat’s metabolic response (dynamic 

modeling) are effective means to detect an altered serum metabolite profile that 

predict diabetes onset. The study of congenic DR.lyp rats prior to diabetes in the DP 

DR.lyp/lyp BB rat indicate that the ensuing diabetes is associated with pronounced 

yet subclinical metabolic abnormalities that predict diabetes. It is striking to note that 

serum metabolites completely distinguished DP from DR rats before the DP rats had 

developed diabetes. These findings are of great value, as early prediction would allow 

early intervention and preservation of pancreatic islet beta cells and thus endogenous 

insulin production.  
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Figure Legends 

 

 

Figure 1. Experimental design. A)Heterozygot breeding of BB rats, resulting in 25% 

diabetes prone DR.lyp/lyp (DP, red), 50% diabetes resistant DR.lyp/+ (DR1, shown in 

blue) and 25% DR.+/+ (DR2, blue) littermates were used for metabolic profiling. All 

rats were sampled daily for blood glucose (B) and weight (C). D) Colony data for 

diabetes distribution shows that no rat was hyperglycemic before 47 days of age and 

all of the rats were diagnosed before 79 days of age, median age being 64 days of age. 

E) Starting at 40 days of age, blood samples were drawn approximately every five 

days until hyperglycemia onset, and subject to metabolomics analyses (samples 

marked by “X”). Red circles (O) represent onset samples and horizontal lines indicate 

pairs of samples used in the Prediction of class modeling (Fig. 3A). 

 

Figure 2. A) Principal components analysis to map the overall temporal metabolic 

changes in all DP and DR rats. B) For clarity the t1-t2 score values for each individual 

rat are also shown in a separate scatter plot. Inter-individual variations are observed 

between individual rats as their score values are clustered at different areas of the 

scores plots. 

 

 
Figure 3. A) OPLS-DA Prediction of Class (PoC) based on LC/MS data on relative 

changes in 17 serum metabolites from DP and DR rats. A PoC value above the 

threshold value of 0,33 predicts diabetes in the individual DP rat prior to 

hyperglycemia onset. B) The correlation scaled loading values of the OPLS-DA 

predictive component based on the LC/MS data revealed the most influential 
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metabolites. Out of the 17 metabolites that differentiated the pre-diabetic DP rats from 

the age matched DR rats, six metabolites showed increased relative levels (shown as 

positive  P(corr) value), and eleven decreased levels in the DP rats (shown as negative 

P(corr) value). C) Correlation based heat map of amino acids, carbohydrates, organic 

acids, lipids and other diverse compounds illustrate the relative metabolic changes 

from GC/MS based analysis prior to hyperglycemia onset.   
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Figure 1-S.  

An overview of the serum metabolite profiles from all DP and DR samples at the 39-40 days of 
age baseline. The PCA scores plot (t1-t2) of the normoglycemic DP (n=16), DR1 (n=7) and DR2 
(n=12) rats reveals no systematic difference in the serum metabolite profiles at baseline day. The 
metabolite profiles were analyzed by LC/MS. 

 

Figure 2-S 

Cross validated OPLS-DA Prediction of Class (PoC) of onset of hyperglycemia in the DP rats 
compared to the DR rats. 
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SUPPLEMENTARY MATERIAL 

Figure 1-S.  

An overview of the serum metabolite profiles from all DP and DR samples at the 39-40 days of 
age baseline. The PCA scores plot (t1-t2) of the normoglycemic DP (n=16), DR1 (n=7) and DR2 
(n=12) rats reveals no systematic difference in the serum metabolite profiles at baseline day. The 
metabolite profiles were analyzed by LC/MS. 
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Cross validated OPLS-DA Prediction of Class (PoC) of onset of hyperglycemia in the DP rats 
compared to the DR rats. 
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