315 research outputs found

    On the optimality of individual entangling-probe attacks against BB84 quantum key distribution

    Full text link
    It is shown that an existing method to study ideal individual attacks on the BB84 QKD protocol using error discard can be adapted to reconciliation with error correction, and that an optimal attack can be explicitly found. Moreover, this attack fills Luetkenhaus bound, independently of whether error positions are leaked to Eve, proving that it is tight. In addition, we clarify why the existence of such optimal attacks is not in contradiction with the established ``old-style'' theory of BB84 individual attacks, as incorrectly suggested recently in a news feature.Comment: 12 pages, 3 figure

    Attacks on quantum key distribution protocols that employ non-ITS authentication

    Full text link
    We demonstrate how adversaries with unbounded computing resources can break Quantum Key Distribution (QKD) protocols which employ a particular message authentication code suggested previously. This authentication code, featuring low key consumption, is not Information-Theoretically Secure (ITS) since for each message the eavesdropper has intercepted she is able to send a different message from a set of messages that she can calculate by finding collisions of a cryptographic hash function. However, when this authentication code was introduced it was shown to prevent straightforward Man-In-The-Middle (MITM) attacks against QKD protocols. In this paper, we prove that the set of messages that collide with any given message under this authentication code contains with high probability a message that has small Hamming distance to any other given message. Based on this fact we present extended MITM attacks against different versions of BB84 QKD protocols using the addressed authentication code; for three protocols we describe every single action taken by the adversary. For all protocols the adversary can obtain complete knowledge of the key, and for most protocols her success probability in doing so approaches unity. Since the attacks work against all authentication methods which allow to calculate colliding messages, the underlying building blocks of the presented attacks expose the potential pitfalls arising as a consequence of non-ITS authentication in QKD-postprocessing. We propose countermeasures, increasing the eavesdroppers demand for computational power, and also prove necessary and sufficient conditions for upgrading the discussed authentication code to the ITS level.Comment: 34 page

    Vanishing Integral Relations and Expectation Values for Bloch Functions in Finite Domains

    Full text link
    Integral identities for particular Bloch functions in finite periodic systems are derived. All following statements are proven for a finite domain consisting of an integer number of unit cells. It is shown that matrix elements of particular Bloch functions with respect to periodic differential operators vanish identically. The real valuedness, the time-independence and a summation property of the expectation values of periodic differential operators applied to superpositions of specific Bloch functions are derived.Comment: 10 page

    A Novel Protocol-Authentication Algorithm Ruling Out a Man-in-the-Middle Attack in Quantum Cryptography

    Full text link
    In this work we review the security vulnerability of Quantum Cryptography with respect to "man-in-the-middle attacks" and the standard authentication methods applied to counteract these attacks. We further propose a modified authentication algorithm which features higher efficiency with respect to consumption of mutual secret bits.Comment: 4 pages, submitted to the International Journal of Quantum Information, Proceedings of the meeting "Foundations of Quantum Information", Camerino, April 200

    New intensity and visibility aspects of a double loop neutron interferometer

    Full text link
    Various phase shifters and absorbers can be put into the arms of a double loop neutron interferometer. The mean intensity levels of the forward and diffracted beams behind an empty four plate interferometer of this type have been calculated. It is shown that the intensities in the forward and diffracted direction can be made equal using certain absorbers. In this case the interferometer can be regarded as a 50/50 beam splitter. Furthermore the visibilities of single and double loop interferometers are compared to each other by varying the transmission in the first loop using different absorbers. It can be shown that the visibility becomes exactly 1 using a phase shifter in the second loop. In this case the phase shifter in the second loop must be strongly correlated to the transmission coefficient of the absorber in the first loop. Using such a device homodyne-like measurements of very weak signals should become possible.Comment: 12 pages, 9 figures, accepted for publication in the Journal of Optics B - Quantum and Semiclassical Optic

    Practical Quantum Key Distribution with Polarization-Entangled Photons

    Full text link
    We present an entangled-state quantum cryptography system that operated for the first time in a real world application scenario. The full key generation protocol was performed in real time between two distributed embedded hardware devices, which were connected by 1.45 km of optical fiber, installed for this experiment in the Vienna sewage system. The generated quantum key was immediately handed over and used by a secure communication application.Comment: 5 pages, 3 figure

    Quantum Interference between a Single-Photon Fock State and a Coherent State

    Full text link
    We derive analytical expressions for the single mode quantum field state at the individual output ports of a beam splitter when a single-photon Fock state and a coherent state are incident on the input ports. The output states turn out to be a statistical mixture between a displaced Fock state and a coherent state. Consequently we are able to find an analytical expression for the corresponding Wigner function. Because of the generality of our calculations the obtained results are valid for all passive and lossless optical four port devices. We show further how the results can be adapted to the case of the Mach-Zehnder interferometer. In addition we consider the case for which the single-photon Fock state is replaced with a general input state: a coherent input state displaces each general quantum state at the output port of a beam splitter with the displacement parameter being the amplitude of the coherent state.Comment: 9 pages, 6 figure

    Quantum Forbidden-Interval Theorems for Stochastic Resonance

    Get PDF
    We extend the classical forbidden-interval theorems for a stochastic-resonance noise benefit in a nonlinear system to a quantum-optical communication model and a continuous-variable quantum key distribution model. Each quantum forbidden-interval theorem gives a necessary and sufficient condition that determines whether stochastic resonance occurs in quantum communication of classical messages. The quantum theorems apply to any quantum noise source that has finite variance or that comes from the family of infinite-variance alpha-stable probability densities. Simulations show the noise benefits for the basic quantum communication model and the continuous-variable quantum key distribution model.Comment: 13 pages, 2 figure

    Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers

    Full text link
    Continuous-variable quantum key distribution protocols, based on Gaussian modulation of the quadratures of coherent states, have been implemented in recent experiments. A present limitation of such systems is the finite efficiency of the detectors, which can in principle be compensated for by the use of classical optical preamplifiers. Here we study this possibility in detail, by deriving the modified secret key generation rates when an optical parametric amplifier is placed at the output of the quantum channel. After presenting a general set of security proofs, we show that the use of preamplifiers does compensate for all the imperfections of the detectors when the amplifier is optimal in terms of gain and noise. Imperfect amplifiers can also enhance the system performance, under conditions which are generally satisfied in practice.Comment: 11 pages, 7 figures, submitted to J. Phys. B (special issue on Few Atoms Optics

    The Case for Quantum Key Distribution

    Get PDF
    Quantum key distribution (QKD) promises secure key agreement by using quantum mechanical systems. We argue that QKD will be an important part of future cryptographic infrastructures. It can provide long-term confidentiality for encrypted information without reliance on computational assumptions. Although QKD still requires authentication to prevent man-in-the-middle attacks, it can make use of either information-theoretically secure symmetric key authentication or computationally secure public key authentication: even when using public key authentication, we argue that QKD still offers stronger security than classical key agreement.Comment: 12 pages, 1 figure; to appear in proceedings of QuantumComm 2009 Workshop on Quantum and Classical Information Security; version 2 minor content revision
    corecore