11,980 research outputs found

    Giant vortices in small mesoscopic disks: an approximate description

    Full text link
    We present an approximate description of the giant vortex state in a thin mesoscopic superconducting disk within the phenomenological Ginzburg-Landau approach. Analytical asymptotic expressions for the energies of the states with fixed vorticity are obtained when a small magnetic flux is accumulated in the disk. The spectrum of the lowest Landau levels of such a disk is also discussed.Comment: 5 pages, 2 figures (presented at the Second European Conference in School Format on Vortex Matter in Superconductors, Crete, Greece, September 15-25, 2001; to be published in Physica C

    Few-electron eigenstates of concentric double quantum rings

    Full text link
    Few-electron eigenstates confined in coupled concentric double quantum rings are studied by the exact diagonalization technique. We show that the magnetic field suppresses the tunnel coupling between the rings localizing the single-electron states in the internal ring, and the few-electron states in the external ring. The magnetic fields inducing the ground-state angular momentum transitions are determined by the distribution of the electron charge between the rings. The charge redistribution is translated into modifications of the fractional Aharonov-Bohm period. We demonstrate that the electron distribution can be deduced from the cusp pattern of the chemical potentials governing the single-electron charging properties of the system. The evolution of the electron-electron correlations to the high field limit of a classical Wigner molecule is discussed.Comment: to appear in Physical Review

    Quantum states in a magnetic anti-dot

    Full text link
    We study a new system in which electrons in two dimensions are confined by a non homogeneous magnetic field. The system consists of a heterostructure with on top of it a superconducting disk. We show that in this system electrons can be confined into a dot region. This magnetic anti-dot has the interesting property that the filling of the dot is a discrete function of the magnetic field. The circulating electron current inside and outside the anti-dot can be in opposite direction for certain bound states. And those states exhibit a diamagnetic to paramagnetic transition with increasing magnetic field. The absorption spectrum consists of many peaks, some of which violate Kohn's theorem, and which is due to the coupling of the center of mass motion with the other degrees of freedom.Comment: 6 pages, 12 ps figure

    Mixing the stimulus list in bilingual lexical decision turns cognate facilitation effects into mirrored inhibition effects

    No full text
    To test the BIA+ and Multilink models’ accounts of how bilinguals process words with different degrees of cross-linguistic orthographic and semantic overlap, we conducted two experiments manipulating stimulus list composition. Dutch-English late bilinguals performed two English lexical decision tasks including the same set of cognates, interlingual homographs, English control words, and pseudowords. In one task, half of the pseudowords were replaced with Dutch words, requiring a ‘no’ response. This change from pure to mixed language list context was found to turn cognate facilitation effects into inhibition. Relative to control words, larger effects were found for cognate pairs with an increasing cross-linguistic form overlap. Identical cognates produced considerably larger effects than non-identical cognates, supporting their special status in the bilingual lexicon. Response patterns for different item types are accounted for in terms of the items’ lexical representation and their binding to ‘yes’ and ‘no’ responses in pure vs mixed lexical decision

    Tuning the polarized quantum phonon transmission in graphene nanoribbons

    Get PDF
    We propose systems that allow a tuning of the phonon transmission function T(ω\omega) in graphene nanoribbons by using C13^{13} isotope barriers, antidot structures, and distinct boundary conditions. Phonon modes are obtained by an interatomic fifth-nearest neighbor force-constant model (5NNFCM) and T(ω\omega) is calculated using the non-equilibrium Green's function formalism. We show that by imposing partial fixed boundary conditions it is possible to restrict contributions of the in-plane phonon modes to T(ω\omega) at low energy. On the contrary, the transmission functions of out-of-plane phonon modes can be diminished by proper antidot or isotope arrangements. In particular, we show that a periodic array of them leads to sharp dips in the transmission function at certain frequencies ων\omega_{\nu} which can be pre-defined as desired by controlling their relative distance and size. With this, we demonstrated that by adequate engineering it is possible to govern the magnitude of the ballistic transmission functions T(ω)(\omega) in graphene nanoribbons. We discuss the implications of these results in the design of controlled thermal transport at the nanoscale as well as in the enhancement of thermo-electric features of graphene-based materials

    Magnetic-field-induced binding of few-electron systems in shallow quantum dots

    Full text link
    Binding of few-electron systems in two-dimensional potential cavities in the presence of an external magnetic field is studied with the exact diagonalization approach. We demonstrate that for shallow cavities the few-electron system becomes bound only under the application of a strong magnetic field. The critical value of the depth of the cavity allowing the formation of a bound state decreases with magnetic field in a non-smooth fashion, due to the increasing angular momentum of the first bound state. In the high magnetic field limit the binding energies and the critical values for the depth of the potential cavity allowing the formation of a bound system tend to the classical values

    The role of atomic vacancies and boundary conditions on ballistic thermal transport in graphene nanoribbons

    Get PDF
    Quantum thermal transport in armchair and zig-zag graphene nanoribbons are investigated in the presence of single atomic vacancies and subject to different boundary conditions. We start with a full comparison of the phonon polarizations and energy dispersions as given by a fifth-nearest-neighbor force-constant model (5NNFCM) and by elasticity theory of continuum membranes (ETCM). For free-edges ribbons we discuss the behavior of an additional acoustic edge-localized flexural mode, known as fourth acoustic branch (4ZA), which has a small gap when it is obtained by the 5NNFCM. Then, we show that ribbons with supported-edges have a sample-size dependent energy gap in the phonon spectrum which is particularly large for in-plane modes. Irrespective to the calculation method and the boundary condition, the dependence of the energy gap for the low-energy optical phonon modes against the ribbon width W is found to be proportional to 1/W for in-plane, and 1/W2^2 for out-of-plane phonon modes. Using the 5NNFCM, the ballistic thermal conductance and its contributions from every single phonon mode are then obtained by the non equilibrium Green's function technique. We found that, while edge and central localized single atomic vacancies do not affect the low-energy transmission function of in-plane phonon modes, they reduce considerably the contributions of the flexural modes. On the other hand, in-plane modes contributions are strongly dependent on the boundary conditions and at low temperatures can be highly reduced in supported-edges samples. These findings could open a route to engineer graphene based devices where it is possible to discriminate the relative contribution of polarized phonons and to tune the thermal transport on the nanoscale

    AA-stacked bilayer square ice between graphene layers?

    Full text link
    Water confined between two layers with separation of a few Angstrom forms layered two- dimensional ice structure. Using large scale molecular dynamics simulations with the adoptable ReaxFF interatomic potential we found that flat monolayer ice with a rhombic-square structure nucleates between graphene layers which is non-polar and non-ferroelectric. Two layers of water are found to crystallize into a square lattice close to the experimental found AA-stacking [G. Algara- Siller et al. Nature 519, 443445 (2015)]. Each layer has a net dipole moment which are in opposite direction. Bilayer ice is also non-polar and non-ferroelectric. For three layer ice we found that each layer has a crystal structure similar to monolayer ice
    corecore