10 research outputs found

    Metabolism and occurrence of methanogenic and sulfate-reducing syntrophic acetate oxidizing communities in haloalkaline environments

    Get PDF
    The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb. 2018.03039/full#supplementary-materialAnaerobic syntrophic acetate oxidation (SAO) is a thermodynamically unfavorable process involving a syntrophic acetate oxidizing bacterium (SAOB) that forms interspecies electron carriers (IECs). These IECs are consumed by syntrophic partners, typically hydrogenotrophic methanogenic archaea or sulfate reducing bacteria. In this work, the metabolism and occurrence of SAOB at extremely haloalkaline conditions were investigated, using highly enriched methanogenic (M-SAO) and sulfate-reducing (S-SAO) cultures from south-eastern Siberian hypersaline soda lakes. Activity tests with the M-SAO and S-SAO cultures and thermodynamic calculations indicated that hydrogen and formate are important IECs in both SAO cultures. Metagenomic analysis of the M-SAO cultures showed that the dominant SAOB was Candidatus Syntrophonatronum acetioxidans, and a near-complete draft genome of this SAOB was reconstructed. Ca. S. acetioxidans has all genes necessary for operating the Wood-Ljungdahl pathway, which is likely employed for acetate oxidation. It also encodes several genes essential to thrive at haloalkaline conditions; including a Na+-dependent ATP synthase and marker genes for salt-out strategies for osmotic homeostasis at high soda conditions. Membrane lipid analysis of the M-SAO culture showed the presence of unusual bacterial diether membrane lipids which are presumably beneficial at extreme haloalkaline conditions. To determine the importance of SAO in haloalkaline environments, previously obtained 16S rRNA gene sequencing data and metagenomic data of five different hypersaline soda lake sediment samples were investigated, including the soda lakes where the enrichment cultures originated from. The draft genome of Ca. S. acetioxidans showed highest identity with two metagenome-assembled genomes (MAGs) of putative SAOBs that belonged to the highly abundant and diverse Syntrophomonadaceae family present in the soda lake sediments. The 16S rRNA amplicon datasets of the soda lake sediments showed a high similarity of reads to Ca. S. acetioxidans with abundance as high as 1.3% of all reads, whereas aceticlastic methanogens and acetate oxidizing sulfate-reducers were not abundant (0.1%) or could not be detected. These combined results indicate that SAO is the primary anaerobic acetate oxidizing pathway at extreme haloalkaline conditions performed by haloalkaliphilic syntrophic consortia.This research was supported by the Soehngen Institute of AnaerobicMicrobiology(SIAM) Gravitation grant(024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Organisation for ScientiïŹc Research (NWO). GM and CV were supported by the ERC Advanced Grant PARASOL (No. 322551). DS also received support from the Russian Foundation for Basic Research (16-04-00035) and the Russian Academy of Sciences and Federal Agency of ScientiïŹc Organizations(0104-2018-0033), AS by the ERC Advanced Grant Novel Anaerobes (No. 323009), and JD by the ERC Advanced Grant Microlipids (No.694569).info:eu-repo/semantics/publishedVersio

    Organic micropollutant removal in full-scale rapid sand filters used for drinking water treatment in The Netherlands and Belgium

    Get PDF
    Biological treatment processes have the potential to remove organic micropollutants (OMPs) during water treatment. The OMP removal capacity of conventional drinking water treatment processes such as rapid sand filters (RSFs), however, has not been studied in detail. We investigated OMP removal and transformation product (TP) formation in seven full-scale RSFs all treating surface water, using high-resolution mass spectrometry based quantitative suspect and non-target screening (NTS). Additionally, we studied the microbial communities with 16S rRNA gene amplicon sequencing (NGS) in both influent and effluent waters as well as the filter medium, and integrated these data to comprehensively assess the processes that affect OMP removal. In the RSF influent, 9 to 30 of the 127 target OMPs were detected. The removal efficiencies ranged from 0 to 93%. A data-driven workflow was established to monitor TPs, based on the combination of NTS feature intensity profiles between influent and effluent samples and the prediction of biotic TPs. The workflow identified 10 TPs, including molecular structure. Microbial community composition analysis showed similar community composition in the influent and effluent of most RSFs, but different from the filter medium, implying that specific microorganisms proliferate in the RSFs. Some of these are able to perform typical processes in water treatment such as nitrification and iron oxidation. However, there was no clear relationship between OMP removal efficiency and microbial community composition. The innovative combination of quantitative analyses, NTS and NGS allowed to characterize real scale biological water treatments, emphasizing the potential of bio-stimulation applications in drinking water treatment. © 2020 The Author

    Growth of anaerobic methane-oxidizing archaea and sulfate reducing bacteria in a high pressure membrane-capsule bioreactor

    Get PDF
    Communities of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB) grow slowly, which limits the ability to perform physiological studies. High methane partial pressure was previously successfully applied to stimulate growth, but it is not clear how different ANME subtypes and associated SRB are affected by it. Here, we report on the growth of ANME-SRB in a membrane capsule bioreactor inoculated with Eckernförde Bay sediment that combines high-pressure incubation (10.1 MPa methane) and thorough mixing (100 rpm) with complete cell retention by a 0.2-m-pore-size membrane. The results were compared to previously obtained data from an ambient-pressure (0.101 MPa methane) bioreactor inoculated with the same sediment. The rates of oxidation of labeled methane were not higher at 10.1 MPa, likely because measurements were done at ambient pressure. The subtype ANME-2a/b was abundant in both reactors, but subtype ANME-2c was enriched only at 10.1 MPa. SRB at 10.1 MPa mainly belonged to the SEEP-SRB2 and Eel-1 groups and the Desulfuromonadales and not to the typically found SEEP-SRB1 group. The increase of ANME-2a/b occurred in parallel with the increase of SEEP-SRB2, which was previously found to be associated only with ANME-2c. Our results imply that the syntrophic association is flexible and that methane pressure and sulfide concentration influence the growth of different ANME-SRB consortia. We also studied the effect of elevated methane pressure on methane production and oxidation by a mixture of methanogenic and sulfate-reducing sludge. Here, methane oxidation rates decreased and were not coupled to sulfide production, indicating trace methane oxidation during net methanogenesis and not anaerobic methane oxidation, even at a high methane partial pressure.This work was supported in part by the EET program of the Dutch Ministries of Economic Affairs; Education, Culture and Science; and Environment and special planning through the Anaerobic Methane Oxidation for Sulfate Reduction project. This research was also supported by the Dutch Technology Foundation STW, which is part of the Netherlands Organization for Scientific Research (NWO) and which is partly funded by the Ministry of Economic Affairs. The research of A.J.M.S. is supported by an ERC grant (project 323009) and a Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO)

    Evaluation and optimization of PCR primers for selective and quantitative detection of marine ANME subclusters involved in sulfate-dependent anaerobic methane oxidation

    Get PDF
    Since the discovery that anaerobic methanotrophic archaea (ANME) are involved in the anaerobic oxidation of methane coupled to sulfate reduction in marine sediments, different primers and probes specifically targeting the 16S rRNA gene of these archaea have been developed. Microbial investigation of the different ANME subtypes (ANME-1; ANME-2a, b, and c; and ANME-3) was mainly done in sediments where specific subtypes of ANME were highly enriched and methanogenic cell numbers were low. In different sediments with higher archaeal diversity and abundance, it is important that primers and probes targeting different ANME subtypes are very specific and do not detect other ANME subtypes or methanogens that are also present. In this study, primers and probes that were regularly used in AOM studies were tested in silico on coverage and specificity. Most of the previously developed primers and probes were not specific for the ANME subtypes, thereby not reflecting the actual ANME population in complex samples. Selected primers that showed good coverage and high specificity for the subclades ANME-1, ANME-2a/b, and ANME-2c were thoroughly validated using quantitative polymerase chain reaction (qPCR). From these qPCR tests, only certain combinations seemed suitable for selective amplification. After optimization of these primer sets, we obtained valid primer combinations for the selective detection and quantification of ANME-1, ANME-2a/b, and ANME-2c in samples where different ANME subtypes and possibly methanogens could be present. As a result of this work, we propose a standard workflow to facilitate selection of suitable primers for qPCR experiments on novel environmental samples.This research is supported by the Dutch Technology Foundation STW (project 10711), which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs. Research of AJMS is supported by ERC grant (project 323009). Research of PHATand AJMS is supported by the SIAM Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO).info:eu-repo/semantics/publishedVersio

    Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source

    Get PDF
    The occurrence of anaerobic oxidation of methane (AOM) and trace methane oxidation (TMO) was investigated in a freshwater natural gas source. Sediment samples were taken and analyzed for potential electron acceptors coupled to AOM. Long-term incubations with 13C-labeled CH4 (13CH4) and different electron acceptors showed that both AOM and TMO occurred. In most conditions, 13C-labeled CO2 (13CO2) simultaneously increased with methane formation, which is typical for TMO. In the presence of nitrate, neither methane formation nor methane oxidation occurred. Net AOM was measured only with sulfate as electron acceptor. Here, sulfide production occurred simultaneously with 13CO2 production and no methanogenesis occurred, excluding TMO as a possible source for 13CO2 production from 13CH4. Archaeal 16S rRNA gene analysis showed the highest presence of ANME-2a/b (ANaerobic MEthane oxidizing archaea) and AAA (AOM Associated Archaea) sequences in the incubations with methane and sulfate as compared with only methane addition. Higher abundance of ANME-2a/b in incubations with methane and sulfate as compared with only sulfate addition was shown by qPCR analysis. Bacterial 16S rRNA gene analysis showed the presence of sulfate-reducing bacteria belonging to SEEP-SRB1. This is the first report that explicitly shows that AOM is associated with sulfate reduction in an enrichment culture of ANME-2a/b and AAA methanotrophs and SEEP-SRB1 sulfate reducers from a low-saline environment.We thank Douwe Bartstra (Vereniging tot Behoud van de Gasbronnen in Noord-Holland, The Netherlands), Carla Frijters (Paques BV, The Netherlands) and Teun Veuskens (Laboratory of Microbiology, WUR, The Netherlands) for sampling; Martin Meirink (Hoogheemraadschap Hollands Noorderkwartier, The Netherlands) for physicochemical data; Freek van Sambeek for providing Figure 1; Lennart Kleinjans (Laboratory of Microbiology, WUR, The Netherlands) for help with pyrosequencing analysis, Irene SĂĄnchez-Andrea (Laboratory of Microbiology, WUR, The Netherlands) for proof-reading and Katharina Ettwig (Department of Microbiology, Radboud University Nijmegen, The Netherlands) for providing M. oxyfera DNA. We want to thank all anonymous reviewers for valuable contributions. This research is supported by the Dutch Technology Foundation STW (project 10711), which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs. Research of AJMS is supported by ERC grant (project 323009) and the Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO)

    Comparative proteomics of Geobacter sulfurreducens PCAT in response to acetate, formate and/or hydrogen as electron donor

    No full text
    Geobacter sulfurreducens is a model bacterium to study the degradation of organic compounds coupled to the reduction of Fe(III). The response of G. sulfurreducens to the electron donors acetate, formate, hydrogen and a mixture of all three with Fe(III) citrate as electron acceptor was studied using comparative physiological and proteomic approaches. Variations in the supplied electron donors resulted in differential abundance of proteins involved in the citric acid cycle (CAC), gluconeogenesis, electron transport, and hydrogenases and formate dehydrogenase. Our results provided new insights into the electron donor metabolism of G. sulfurreducens. Remarkably, formate was the preferred electron donor compared to acetate, hydrogen, or acetate plus hydrogen. When hydrogen was the electron donor, formate was formed, which was associated with a high abundance of formate dehydrogenase. Notably, abundant proteins of two CO2 fixation pathways (acetyl-CoA pathway and the reversed oxidative CAC) corroborated chemolithoautotrophic growth of G. sulfurreducens with formate or hydrogen and CO2, and provided novel insight into chemolithoautotrophic growth of G. sulfurreducens. This article is protected by copyright. All rights reserved.This work was performed in the TTIW-cooperation framework of Wetsus, European Centre of Excellence for Sustain able Water Technology (www.wetsus.nl). Wetsus is funded by the Dutch Ministry of Economic Affairs, the European Union Regional Development Fund, the Province of Fryslñn, the City of Leeuwarden and the EZ/Kompas program of the “Samenwerkingsverband Noord-Nederland”. The authors like to thank the participants of the research theme ‘Resource Recovery’ for fruitful discussions and their financial support. Research of AJMS is financed by an advanced grant of the European Research Council under the European Union’s Seventh Framework Programme (FP/2007e2013)/ERC Grant Agreement (project 323009). Research of AJMS and PHAT is supported by a Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science.info:eu-repo/semantics/publishedVersio

    Pheochromocytoma: Unmasking the Chameleon

    No full text

    Nitrogen-Fixing Plant-Microbe Symbioses

    No full text
    corecore