262 research outputs found

    Ancient Landscapes of Uruguay

    Get PDF
    In this chapter, based on the available geological information, a model for the genesis and evolution of the Uruguayan landscape is proposed. A structural framework of the landscape evolution is provided and the record of such evolution in the most representative geological units is considered. A brief summary of the Uruguayan geology and its location in the regional context is performed, from Precambrian to Cenozoic times.From the analysis of the geological record, it may be observed that the climate was very arid during part of the Jurassic and the Early Cretaceous. Together with the lava flows of the Arapey Formation, the climate became less arid as the Gondwana continents were becoming apart from each other. However, the geological record suggests that semiarid climates were still prevailing. In the Middle Cretaceous, semiarid and wetter climates progressively alternated, until the Early Tertiary, when very wet and warm conditions were established, in coincidence with the ?Paleocene Eocene Thermal Maximum (PETM)?, followed by semiarid climates in the Oligocene, wetter conditions in the Miocene and semiarid again in the Pliocene, with alternating semiarid and humid conditions during the entire Quaternary.On the basis of the paleoclimatic evolution, the development of relief is discussed, considering as bases for the analysis the different morphostructural units in which the country is divided. Due to their size, shape and location (passive margin) of Uruguay, climate uniformity is assumed for each period throughout the entire territory. It is also assumed that the surfaces around elevations of 500 meters correspond to relicts of probably pre-Cretaceous etchplains, strongly denudated, which are observed only in the surroundings of Aiguá.The landforms situated below the oldest surfaces, for instance those below 320 m a.s.l. in the Easthern Hills Regions (Sierra del Este), correspond to a new generation of geomorphological surfaces that may be considered of Cretaceous age, according to the information presently available. This surface may be correlated with the oldest surface developed on top of the lava flows of the Arapey Formation.The extremely warm and wet climate of the Eocene prepared the conditions for the planation processes that covered most of the Uruguayan territory during the Oligocene, generating pediplains which were later reworked during the Late Cenozoic, up to the Quaternary, generating a landscape of smooth hills.The morphogenetic potential of each morphostructural region determined the available energy of the resulting landscape, being this at a minimum in the Santa Lucía Basin, which continued to be under subsidence condition until the Tertiary, and almost non-existant in the Laguna Merín Basin, where subsidence remains active until the Holocene.Fil: Panario, Daniel. Universidad de la República; UruguayFil: Gutierrez, Ofelia. Universidad de la República; UruguayFil: Bettucci Sanchez, Leda. Universidad de la República; UruguayFil: Peel, Elena. Universidad de la República; UruguayFil: Oyhantcabal, Pedro. Universidad de la República; UruguayFil: Rabassa, Jorge Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentin

    Antigenic and genetic characterization of a divergent African virus, Ikoma lyssavirus

    Get PDF
    In 2009, a novel lyssavirus (subsequently named Ikoma lyssavirus, IKOV) was detected in the brain of an African civet (Civettictis civetta) with clinical rabies in the Serengeti National Park of Tanzania. The degree of nucleotide divergence between the genome of IKOV and those of other lyssaviruses predicted antigenic distinction from, and lack of protection provided by, available rabies vaccines. In addition, the index case was considered likely to be an incidental spillover event, and therefore the true reservoir of IKOV remained to be identified. The advent of sensitive molecular techniques has led to a rapid increase in the discovery of novel viruses. Detecting viral sequence alone, however, only allows for prediction of phenotypic characteristics and not their measurement. In the present study we describe the in vitro and in vivo characterization of IKOV, demonstrating that it is (1) pathogenic by peripheral inoculation in an animal model, (2) antigenically distinct from current rabies vaccine strains and (3) poorly neutralized by sera from humans and animals immunized against rabies. In a laboratory mouse model, no protection was elicited by a licensed rabies vaccine. We also investigated the role of bats as reservoirs of IKOV. We found no evidence for infection among 483 individuals of at least 13 bat species sampled across sites in the Serengeti and Southern Kenya

    Risk of SARS-CoV-2 transmission from humans to bats : an Australian assessment

    Get PDF
    SARS-CoV-2, the cause of COVID-19, infected over 100 million people globally by February 2021. Reverse zoonotic transmission of SARS-CoV-2 from humans to other species has been documented in pet cats and dogs, big cats and gorillas in zoos, and farmed mink. As SARS-CoV-2 is closely related to known bat viruses, assessment of the potential risk of transmission of the virus from humans to bats, and its subsequent impacts on conservation and public health, is warranted. A qualitative risk assessment was conducted by a multi-disciplinary group to assess this risk in bats in the Australian context, with the aim of informing risk management strategies for human activities involving interactions with bats. The overall risk of SARS-CoV-2 establishing in an Australian bat population was assessed to be Low, however with a High level of uncertainty. The outcome of the assessment indicates that, for the Australian situation where the prevalence of COVID-19 in humans is very low, it is reasonable for research and rehabilitation of bats to continue, provided additional biosecurity measures are applied. Risk assessment is challenging for an emerging disease where information is lacking and the situation is changing rapidly; assessments should be revised if human prevalence or other important factors change significantly. The framework developed here, based on established animal disease risk assessment approaches adapted to assess reverse zoonotic transmission, has potential application to a range of wildlife species and situations

    Magnesium and <sup>54</sup>Cr isotope compositions of carbonaceous chondrite chondrules – Insights into early disk processes

    No full text
    AbstractWe report on the petrology, magnesium isotopes and mass-independent 54Cr/52Cr compositions (μ54Cr) of 42 chondrules from CV (Vigarano and NWA 3118) and CR (NWA 6043, NWA 801 and LAP 02342) chondrites. All sampled chondrules are classified as type IA or type IAB, have low 27Al/24Mg ratios (0.04–0.27) and display little or no evidence for secondary alteration processes. The CV and CR chondrules show variable 25Mg/24Mg and 26Mg/24Mg values corresponding to a range of mass-dependent fractionation of ∼500ppm (parts per million) per atomic mass unit. This mass-dependent Mg isotope fractionation is interpreted as reflecting Mg isotope heterogeneity of the chondrule precursors and not the result of secondary alteration or volatility-controlled processes during chondrule formation. The CV and CR chondrule populations studied here are characterized by systematic deficits in the mass-independent component of 26Mg (μ26Mg∗) relative to the solar value defined by CI chondrites, which we interpret as reflecting formation from precursor material with a reduced initial abundance of 26Al compared to the canonical 26Al/27Al of ∼5×10−5. Model initial 26Al/27Al values of CV and CR chondrules vary from (1.5±4.0)×10−6 to (2.2±0.4)×10−5. The CV chondrules display significant μ54Cr variability, defining a range of compositions that is comparable to that observed for inner Solar System primitive and differentiated meteorites. In contrast, CR chondrites are characterized by a narrower range of μ54Cr values restricted to compositions typically observed for bulk carbonaceous chondrites. Collectively, these observations suggest that the CV chondrules formed from precursors that originated in various regions of the protoplanetary disk and were then transported to the accretion region of the CV parent asteroid whereas CR chondrule predominantly formed from precursor with carbonaceous chondrite-like μ54Cr signatures. The observed μ54Cr variability in chondrules from CV and CR chondrites suggest that the matrix and chondrules did not necessarily formed from the same reservoir. The coupled μ26Mg∗ and μ54Cr systematics of CR chondrules establishes that these objects formed from a thermally unprocessed and 26Al-poor source reservoir distinct from most inner Solar System asteroids and planetary bodies, possibly located beyond the orbits of the gas giants. In contrast, a large fraction of the CV chondrules plot on the inner Solar System correlation line, indicating that these objects predominantly formed from thermally-processed, 26Al-bearing precursor material akin to that of inner Solar System solids, asteroids and planets

    Transmission or within-host dynamics driving pulses of zoonotic viruses in reservoir-host populations

    Get PDF
    Progress in combatting zoonoses that emerge from wildlife is often constrained by limited knowledge of the biology of pathogens within reservoir hosts. We focus on the host–pathogen dynamics of four emerging viruses associated with bats: Hendra, Nipah, Ebola, and Marburg viruses. Spillover of bat infections to humans and domestic animals often coincides with pulses of viral excretion within bat populations, but the mechanisms driving such pulses are unclear. Three hypotheses dominate current research on these emerging bat infections. First, pulses of viral excretion could reflect seasonal epidemic cycles driven by natural variations in population densities and contact rates among hosts. If lifelong immunity follows recovery, viruses may disappear locally but persist globally through migration; in either case, new outbreaks occur once births replenish the susceptible pool. Second, epidemic cycles could be the result of waning immunity within bats, allowing local circulation of viruses through oscillating herd immunity. Third, pulses could be generated by episodic shedding from persistently infected bats through a combination of physiological and ecological factors. The three scenarios can yield similar patterns in epidemiological surveys, but strategies to predict or manage spillover risk resulting from each scenario will be different. We outline an agenda for research on viruses emerging from bats that would allow for differentiation among the scenarios and inform development of evidence-based interventions to limit threats to human and animal health. These concepts and methods are applicable to a wide range of pathogens that affect humans, domestic animals, and wildlife

    Transmission or Within-Host Dynamics Driving Pulses of Zoonotic Viruses in Reservoir-Host Populations.

    Get PDF
    Progress in combatting zoonoses that emerge from wildlife is often constrained by limited knowledge of the biology of pathogens within reservoir hosts. We focus on the host-pathogen dynamics of four emerging viruses associated with bats: Hendra, Nipah, Ebola, and Marburg viruses. Spillover of bat infections to humans and domestic animals often coincides with pulses of viral excretion within bat populations, but the mechanisms driving such pulses are unclear. Three hypotheses dominate current research on these emerging bat infections. First, pulses of viral excretion could reflect seasonal epidemic cycles driven by natural variations in population densities and contact rates among hosts. If lifelong immunity follows recovery, viruses may disappear locally but persist globally through migration; in either case, new outbreaks occur once births replenish the susceptible pool. Second, epidemic cycles could be the result of waning immunity within bats, allowing local circulation of viruses through oscillating herd immunity. Third, pulses could be generated by episodic shedding from persistently infected bats through a combination of physiological and ecological factors. The three scenarios can yield similar patterns in epidemiological surveys, but strategies to predict or manage spillover risk resulting from each scenario will be different. We outline an agenda for research on viruses emerging from bats that would allow for differentiation among the scenarios and inform development of evidence-based interventions to limit threats to human and animal health. These concepts and methods are applicable to a wide range of pathogens that affect humans, domestic animals, and wildlife.National Institutes of HealthThis is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the Public Library of Science

    Requirements and process analysis for ports and waterways open BIM ISO standards development

    Get PDF
    Purpose Defining building information modelling (BIM) standards for the infrastructure domain is a central issue to the successful implementation of BIM in civil engineering domains. To this end, this paper aims to present a requirements and process analysis for the ports and waterways domain to address the lack of BIM standards development, using the information delivery manual (IDM) approach and the ethos of openBIM standards. Design/methodology/approach This research uses the IDM approach. This involves the definition of use cases, process maps, exchange scenarios and subsequent exchange requirements. All these developments were sourced and validated by a series of international industry consultations. Findings The paper identifies 30 domain relevant use cases collated from existing sources and new cases. An overview and detailed ports and waterways process map (defining actors, activities and data exchanges). The process maps highlighted 38 exchange scenarios between various activities. Various exchange requirements were defined and are discussed in the context of the required information exchange model and the extensions required to fulfil the needs of the domain. The analysis provides the core information for the next steps of development for a substantial extension to the Industry Foundation Classes and the supporting data dictionary standards. Research limitations/implications Because of the international scope of the research, the outcomes can be applied by any stakeholders in the domain of ports and waterways. Therefore, some variation is expected at a national and organizational level. This research has the potential to accelerate the adoption of openBIM standards within the ports and waterways domain leading to increases in efficiency, collaborative working. Originality/value This paper reviews the requirements of an identified gap in the provision of openBIM standards relevant and applicable to the domain of ports and waterways

    Evolution of design considerations in complex craniofacial reconstruction using patient-specific implants

    Get PDF
    Previously published evidence has established major clinical benefits from using Computer Aided Design (CAD), Computer Aided Manufacturing (CAM), and Additive Manufacturing (AM) to produce patient-specific devices. These include cutting guides, drilling guides, positioning guides, and implants. However, custom devices produced using these methods are still not in routine use – particularly by the UK National Health Service (NHS). Oft-cited reasons for this slow uptake include: a higher up-front cost than conventionally-fabricated devices, material-choice uncertainty, and a lack of long-term follow-up due to their relatively recent introduction. This paper identifies a further gap in current knowledge – that of design rules, or key specification considerations for complex CAD/CAM/AM devices. This research begins to address the gap by combining a detailed review of the literature with first-hand experience of interdisciplinary collaboration on five craniofacial patient case-studies. In each patient case, bony lesions in the orbito-temporal region were segmented, excised, and reconstructed in the virtual environment. Three cases translated these digital plans into theatre via polymer surgical guides. Four cases utilised AM to fabricate titanium implants. One implant was machined from PolyEther Ether Ketone (PEEK). From the literature, articles with relevant abstracts were analysed to extract design considerations. 19 frequently-recurring design considerations were extracted from previous publications. 9 new design considerations were extracted from the case studies – on the basis of subjective clinical evaluation. These were synthesised to produce a design considerations framework to assist clinicians with prescribing and design engineers with modelling. Promising avenues for further research are proposed
    corecore