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Abstract 

Previously published evidence has established major clinical benefits from using Computer Aided Design (CAD), Computer 

Aided Manufacturing (CAM), and Additive Manufacturing (AM) to produce patient-specific devices.  These include cutting 

guides, drilling guides, positioning guides, and implants.  However, custom devices produced using these methods are still 

not in routine use – particularly by the UK National Health Service (NHS).  Oft-cited reasons for this slow uptake include: a 

higher up-front cost than conventionally-fabricated devices, material-choice uncertainty, and a lack of long-term follow-up 

due to their relatively recent introduction.  This paper identifies a further gap in current knowledge – that of design rules, or 

key specification considerations for complex CAD/CAM/AM devices.  This research begins to address the gap by 

combining a detailed review of the literature with first-hand experience of interdisciplinary collaboration on five craniofacial 

patient case-studies.   

 

In each patient case, bony lesions in the orbito-temporal region were segmented, excised, and reconstructed in the virtual 

environment.  Three cases translated these digital plans into theatre via polymer surgical guides.  Four cases utilised AM to 

fabricate titanium implants.  One implant was machined from PolyEther Ether Ketone (PEEK).  From the literature, articles 

with relevant abstracts were analysed to extract design considerations.  19 frequently-recurring design considerations were 

extracted from previous publications.  9 new design considerations were extracted from the case studies – on the basis of 

subjective clinical evaluation.  These were synthesised to produce a design considerations framework to assist clinicians with 

prescribing and design engineers with modelling.  Promising avenues for further research are proposed.    

Keywords 

Implants / Prosthetics, Computer Assisted Surgery, Computer Aided Design, Additive Manufacturing, 3D Printing, Surgical 

Guides, Orthopaedic Materials,                                                       



 

 

Introduction  

 

Published evidence has established clinical and technical efficacy for Computer Aided Design (CAD), Additive 

Manufacturing (AM), and Computer Aided Manufacturing (CAM) in planning and producing patient-specific craniofacial 

surgical devices.  CAD and AM or CAM have been successfully exploited to produce: patient-specific anatomical models 

[1-6]; pre-operative and intra-operative shaping jigs [7-13]; digital surgical plans [13-23]; custom drilling guides [21, 24-29]; 

custom cutting guides [17, 18, 20, 23, 26, 30, 31]; custom bone re-positioning guides [18, 19, 21, 32, 33]; and custom 

implants in titanium [32, 34-42] or polyether ether ketone (PEEK) [22, 34, 38, 43-55].  However, due to the relatively small 

number of published complex cases; inconsistencies between a broad range of software tools and procurement approaches; 

and a general trend in the literature to skip detailed device design analysis; commonly agreed design considerations do not 

yet exist for use by design engineers or surgeons.   

 

This article identifies and evaluates key design considerations when digitally planning and designing complex craniofacial 

AM / CAM devices.  To achieve this, it concludes a narrative literature review with a table which collates and consolidates 

frequently-cited considerations from previous work.  Then, new data from five primary case studies are described, analysed, 

and concluded for analogous (and unique) considerations.  A basic framework is proposed – to synthesise these primary and 

secondary sources and drive future decision-making.  Lastly, the discussion chapter outlines some speculative design 

considerations which deserve further research.  These have emerged from the case studies - but remain as-yet unproven 

across a wider sample, or in the literature.  Incidentally, the term “design considerations” is used in place of “design rules” to 

reflect the evolving and patient-specific nature of the devices in question – and to allow scope for modifications depending 

on a patient’s unique needs.  Issues of universality and generalisation are a recurring theme in this process.   

 

In this study, complex craniofacial devices are defined as those which replace the geometry of two or more bony surfaces (or 

of comminuted defects).  Geometrically simpler reconstructions such as many orbital floors or cranioplasty plates would be 

likely to involve fewer critical design considerations, or be more easily fabricated in a hospital laboratory [9-11].  This 

paper’s featured case studies were divided between cases of meningioma and fibrous dysplasia.  Each case required disease 

excision and alloplastic reconstruction in the orbito-temporal region.  The cases varied in four key ways: alloplastic 

reconstruction material; the degree of digital planning which was undertaken; the use (or not) of surgical guides; and 

naturally, in specific design details.  Guides were produced in an epoxy resin via AM.  Four AM implants were produced in 

Ti6Al4V ELI (grade 23).  One implant was produced in PEEK via CAM.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Literature review 

 

Articles were sourced from searches of the PubMed and Google Scholar indexes.  Then abstracts were analysed for 

relevance and qualifying articles saved for full review.  This review covers both complex craniofacial reconstructions and 

simple reconstructions (where a given issue is generalisable across categories) to establish the current state-of-the-art 

context.  

 

Pathology implications 

 

As noted, the case studies in this article cover fibrous dysplasia and meningioma.  Fibrous dysplasia is a benign disorder 

involving abnormal bone growth - whose slower progression after adolescence usually limits excision and reconstructive 

surgery to only those patients experiencing severe aesthetic or functional problems [56].  Functional impacts include hearing 

loss, headaches, diplopia, vision loss, and sinusitis – with cosmetic concerns stemming from abnormal swelling of 

craniofacial bones [57].  Meningiomas are also usually benign and slow-growing; though some cases can be malignant - 

dictating a greater degree of urgency and full-excision where possible [58].  In benign cases on the other hand, the speed of 

pre-operative planning and device design is not generally a concern; with Gerbino et al. [23] reporting 20-35 days to produce 

patient-specific PEEK implants via an external supplier.   

 

Conventional procedures 

 

Where CAD workflows are not used to produce end-use parts, both simple and complex pre-formed implants and guides rely 

on laboratory planning and fabrication techniques such as: model surgery [3, 4, 12], carving and sculpting [11], press-

forming [9-11, 59], laser welding [60], vacuum forming polymers [26], and shaping stock-plates against medical models [12, 

13, 61].  Analogue approaches like these have been characterised as artisanal or unreliable – albeit utilising highly-

specialised skills [11, 62, 63].  A further drawback centres on appropriate laboratory support not being universally available 

[60].  In cases where a pre-operative surgical plan is established, physical guides were (and are) not always used – relying 

instead on translating plans into theatre via subjective free-hand visual judgement [64, 65]  or physical measurements [66].     

 

Despite the acknowledged time-saving [10, 61, 67, 68] and accuracy [68, 69] benefits from pre-forming implants, it was (and 

is still) not a standardised approach; where intra-operative shaping of titanium mesh [70], polymethyl methacrylate (PMMA) 

[62, 71], hydroxyapatite [71], and autologous bone grafts [72] are used instead.  Indeed, autologous bone grafting is still 

regularly identified as the gold-standard reconstruction material – at least for simpler reconstructions [44, 73-75].  This is 

surprising – in light of cited problems with significant bone resorption [76], longer surgeries, higher complication rates, and 

longer hospital stays [34]. 

 

Digital procedures 

 

Surgical procedures undertaken with CAD planning, AM guides, and AM or CAM implants can be shorter, result in better 

accuracy of implant fit, reduce the likelihood of revisions [77], incorporate tailored implant mechanical properties [78], and 

improve implant osseointegration [79].  Navigation equipment can be used instead of, or in combination with surgical 

guides, to achieve high levels of implant placement accuracy [80] and excision confidence [52, 81] – bringing some 



 

 

previously inoperable tumours into the realms of viability [58].  However, whilst navigation is useful, the hardware and 

software is expensive – reducing availability to many hospital units [67].         

 

Up-front device cost is usually identified as the major disadvantage of AM and CAM devices [45, 54, 82].  However, given 

the reduced likelihood of revision surgeries and the reduced duration of in-patient admissions, the overall treatment cost can 

actually decrease [34].  This driver is in-addition to the numerous clinical outcome improvements noted above.  Time-delays 

also create a barrier to universal adoption of digital workflows across specialties.  Due to delays from pre-operative scans, 

data transfer, data segmentation, device modelling, and device fabrication [11], digital workflows cannot be used in 

emergency procedures such as immediate post-traumatic surgery. 

 

CAD and AM or CAM techniques have been exploited successfully to repair or replace relatively simple craniofacial 

geometries such as orbital floor and medial wall fractures [32, 42, 80, 83], craniectomy defects [34, 44, 45, 54, 55, 82, 84]  

and deficient bone in the mandible [85] and zygoma [39, 50].  Complex procedures where precision is critical such as 

hemimandibulectomy with a fibula free-flap reconstruction [19, 30, 86-88], or midface osteotomies [18, 89, 90] have 

benefitted significantly from the digital approach; though usually with stock plate fixation or AM implants designed as 

highly customised mimics of those stock plates.  Bones or grafts are usually held in their new positions by such implants – as 

opposed to creating an alloplastic bone replacements.  Perhaps the greatest value from digital approaches is when implants 

are used to replace missing or excised bone with highly complex shapes - which would be difficult to accurately reconstruct 

using conventional techniques.  Complex forms have been produced to successfully replace the temporal bone, orbital rim, 

sphenoid, frontal bone, and zygoma [23, 38, 49, 50, 52, 91]. 

 

Implant materials 

 

No consensus exists about the most appropriate alloplastic reconstruction material.  Indeed, there is no ideal choice [45, 82].  

Instead, publications tend to identify positive and negative characteristics of titanium and PEEK as the two foremost digital 

options.  Biocompatibility of titanium materials has been well established [92].  Indeed, titanium’s potential for 

osseointegration is a major driver for certain beneficial applications [79, 93].  This is in addition to the previously-noted 

investigations into tailoring mechanical properties of AM implants – by manipulating internal structures.   

 

Medical grade Ti6Al4V is used across the Selective Laser Melting (SLM) class of AM processes [94], and the Electron 

Beam Melting (EBM) (Arcam, Sweden) alternative [95].  Due to pre-heating each layer of powdered material before full 

melting occurs, the EBM process experiences fewer problems with residual heat-stresses [96].  The smaller temperature 

differential also means the process is generally quicker [95].  SLM-derived processes on the other hand, can achieve finer 

details and smoother surface finishes [97].  Fundamentally, AM production of titanium implants enables greater design 

freedoms than conventional machining.  AM allows virtually any geometry to be reproduced with internal and external 

details, whereas CAM requires consideration of where the cutting tool can (or cannot) reach [1, 62].  Design for AM still 

requires expert input – particularly for optimising build orientations, support structures, surface finishing, and hole-reaming 

[32, 98].          

 

Published digital workflow cases (or case series) demonstrate a slight bias towards the use of PEEK.  These devices can 

exhibit greater similarity to bone strength, stiffness, and elasticity – which can reduce stress shielding [34].  Moreover, 

PEEK can contribute to devices which promote better patient comfort compared to titanium – by exhibiting lower thermal 

conductivity, lower density, and a lighter weight [82].  PEEK’s radiolucency is often cited as a major benefit – for improved 

post-operative imaging [38, 48, 91, 99] which is particularly valuable in oncological cases.  This material is suited to intra-



 

 

operative shape adjustments using burrs – which is reported as being necessary on an infrequent to moderate basis [44, 45, 

52, 53, 99, 100].  Details about the precise causes behind the need for these adjustments are not covered in depth – especially 

in terms of early design process decision-making.                  

 

Design considerations  

 

Although mid to low-end AM machines are increasingly affordable to individual hospital units [5, 6], effective patient-

specific device design is contingent upon close multidisciplinary collaboration across engineering and clinical specialties [2, 

11, 101].  Clinical papers about individual cases (or case series) often overlook detailed reporting of device design 

specifications, device modelling operations, or device detailing decisions.  This could be because the reported production 

process undertaken by some external implant companies is one of relative detachment from the surgeon (with limited 

collaboration beyond an initial device request) [48, 49].  Alternatively, this may simply be because the importance of 

including such details for a wider audience (including design engineers) was overlooked - in favour of detailed descriptions 

of the pathology and the surgical procedure. 

 

Published cases generally describe and justify material choices, and justify the application of a semi-digital or digital 

approach.  There is often little detail on implant shape (beyond the near-universal recommendation to mirror contralateral 

healthy anatomy wherever possible) [15, 38, 39, 51, 52, 62, 83, 85, 100].  Where details are described, no effort has yet been 

made to generalise and synthesise the considerations around CAD and AM or CAM implant production.  Table 1 collates 

and summarises the design considerations sourced from existing literature – by explicit reasoning or obvious inference.  

Considerations with fewer than three sources were excluded, as were obvious pre-requisites – such as the biocompatibility, 

good strength, and stiffness of PEEK and titanium.  



 

 

ID: Design considerations from literature: Considered in: 

CAD / AM / CAM justification: 

A 

Consider overall treatment cost Vs. up-front devices cost. 

High upfront costs can be offset by savings from reduced surgery time, hospital stays, and revision 

surgeries. 

[99], [38], [77], [76], [34] 

B 

Consider the CAD / AM / CAM approach when there is a desire to improve the accuracy of the 

cosmetic outcome. 

Relative to conventional methods. 

[49], [91], [23], [44], [50], [38], [46], 

[99], [83], [39], [52], [102], [103], 

[100], [15], [88], [41], [75], [36], 

C 
Consider the CAD / AM / CAM approach when the defective anatomy is large and / or 

geometrically complex. 

[49], [47], [85], [99], [91], [23], [44], 

[52], [103], [100], [77],  

D Consider the CAD / AM / CAM approach for reducing operative time. 

[47], [99], [83], [91], [23], [50], [53], 

[38], [46], [39], [52], [22], [102], [104], 

[15], [88], [77], [41], [75], [36], 

E Consider the CAD / AM / CAM approach to produce implants with a more accurate fit. [47], [50], [22], [54], [88], [77], 

F 

Consider the CAD / AM / CAM approach to overcome the downsides of autologous 

reconstruction. 

Including: donor site morbidity, longer surgeries, compromised aesthetics, high dependency on 

surgeon skill, unpredictable resorption, and limited bone graft availability. 

[48], [85], [99], [23], [44], [51], [39], 

[52], [22], [102], [100], [104], [34], 

[56], [73], [36], [45] 

G 
Consider CAD / AM / CAM methods when a single-step excision and reconstruction procedure is 

required. 
[48], [23], [44], [38], [52], [102], 

Material choice: 

H Consider PEEK if there is a preference for standard mini-plate fixation. [49], [47], [48], [23], [51], [38], [52], 

I Consider PEEK for easy intra-operative modifications. 
[47], [48], [99], [91], [23], [44], [53], 

[38], [45], 

J 
Consider PEEK for an alloplastic material with mechanical properties (and thickness) which are 

similar to cortical bone. 
[48], [23], [44], [43], [52], [74], 

K 
Consider PEEK when there is a need for radiolucency (for radiotherapy or post-operative 

imaging). 

[48], [99], [23], [46], [52], [54], [91], 

[38], 

L 
Consider avoiding titanium where there might be concerns with thermal conductivity or 

sensitivity. 
[34], [54], [105], 

Strategy: 

M 
Consider the use of surgical guides to accurately translate the digital plan into theatre.  

As a driver for CAD / AM / CAM use. 
[23], [44], [38], [75], 

N 
Consider navigation for excision guidance and implant placement in place of guides (where 

available). 
[52], [22], [102], [15], 



 

 

O Consider basing implant designs on mirrored healthy anatomy wherever possible.   

[85], [99], [83], [91], [44], [51], [52], 

[49], [15], [77], [106], [75], [62], [100], 

[39], [38],     

P 

Consider reconstruction-site soft tissue coverage to minimise skin tension and risk of implant 

exposure.   

Could be via skin expanders, grafts, reducing implant volume or compromising ideal contours. 

[49], [47], [99], [45] 

Q 
Consider soft tissue contours in addition to bone. 

Could involve mirroring soft tissues with hard when designing implant contours. 
[49], [22], [106], [75], 

R Consider bone cement for adjusting contours or margins. [47], [38], [102], 

Detailed modelling: 

S 

Consider adding holes or a mesh pattern into the main implant area. 

To: provide a foundation for securing the dura and temporalis muscle, preventing epidural 

hematoma, encouraging better tissue integration and cell growth, reducing weight, and lowering 

temperature conductivity. 

[23], [38], [37], [77], [41], [39],  

 

Table 1: Collated and consolidated design considerations from literature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Materials, methods and results 

 

This section describes the methods employed for device design and fabrication – in the context of their clinical approaches.  

Results are presented immediately after each case – because they dictated key subsequent method modifications.  All devices 

were prescribed and implanted by the same UK maxillofacial surgeon, in the same hospital, with significant input from a 

multidisciplinary team including neurosurgery and ophthalmology colleagues.  All digital planning and design work was 

undertaken in collaboration with a university-based design development and research institute.  In all cases, the digital 

workflow was selected to overcome problems experienced by the maxillofacial surgeon in using conventional and semi-

digital techniques in prior complex reconstructions.  For example, a meningioma patient with failed autologous bone graft 

reconstruction had undergone revision surgery at the hospital, using titanium mesh which was intra-operatively shaped on an 

anatomical model.  The result was judged only as acceptable - with scope for improvement in aesthetic accuracy, eliminating 

donor-site morbidity, improving visual functional outcomes, and reducing surgery duration. 

 

The digital workflow involved (to varying degrees) the use of medical models, digital surgical planning, patient-specific 

guide design, patient-specific implant design, polymer guide fabrication and metallic implant fabrication.  Pre-operative 

Computed Tomography (CT) scanning was utilised for each patient.  CT data processing was undertaken by a design 

engineer at the institute using a standardised procedure and appropriate CE-marked software (Mimics, Materialise, 

Belgium).  All polymer models and guides were fabricated using StereoLithography Apparatus (ProJet 6000HD, 3D 

Systems, USA) in Accura ClearVue resin (3D Systems, USA) which has been tested to USP 23 Class VI – rendering it 

suitable for sterilisation and for building transient surgical devices when parts are cleaned appropriately.  Polymer devices 

were prepared for fabrication and had support structures added using Magics (Materialise, Belgium).   

 

Device design was undertaken by institute engineers using FreeForm Plus (3D Systems, USA) in all cases - via its haptic 

PHANTOM interface.  Implants in cases 1-4 were fabricated by Laser Melting (LM) Ti6Al4V-ELI (medical grade 23) by an 

appropriately accredited supplier (3D Systems LayerWise, Belgium).  Titanium was selected by the surgical team on the 

basis of a long track-record of success in the hospital and the wider maxillofacial specialty – in addition to the titanium 

benefits highlighted in the literature review chapter.  Implant components in case 5 were fabricated by five-axis CAM of 

PEEK by a similarly qualified supplier (Synthes, Switzerland).  PEEK was selected for this case because of a high-degree of 

confidence that post-operative radiotherapy would be necessary.  PEEK’s radiolucency was judged to be important – for 

post-operative imaging and radiotherapy uninterrupted by scatter or artefacts; important for surveillance and treatment.  

 

Case 1 - methods 

 

Patient 1 presented with headaches, a drooping eyelid, eye asymmetry, left-eye exophthalmos, worsening vision, and 

diplopia on far-left gaze.  Following consultation and pre-operative CT imaging, a left spheno-orbital intra-osseous 

meningioma was diagnosed and an anatomical model requested from the institute by the surgeon – in addition to images 

showing the engineer’s interpretation of the tumour via manual segmentation.  The model, images, and raw scan data were 

used at an interdisciplinary clinical meeting to determine the surgical plan and excision margins – which were drawn on to 

the model in pen.  At the institute, the engineers transferred the agreed margins to the virtual model using the haptic design 

software, deleted the anatomy inside this boundary, and protected the resulting virtual model against further modifications 

by setting it as a “buck” component.  This interpretation was verified by the surgeon via emailed images.   

 



 

 

As a basis for accurate implant design, the contralateral healthy anatomy was mirrored to reconstruct the defect in the virtual 

environment.  The resulting shapes were smoothed and blended into the surrounding remaining original anatomy.  Material 

was layered-on to this foundation with a thickness of 0.8mm – indicating the extents of the final titanium implant.  As shown 

in figure 1, the implant was formed of two components which overlaid the excision margin in order to ensure good support 

around the edges.  Two non-interfacing components were judged to be necessary to permit insertion from two separate 

directions.  The implant replaced the outer bony surface of the defects – not the full bone thickness.  Fixation tabs for the 

orbital component were brought out to the rim – to permit screwdriver access.  Fixation tabs for the temporal component 

were extended – with a view towards permitting successful fixation even in the event of a larger-than-anticipated excision.  

This would have been necessary if the lesion had grown significantly since the scan was undertaken or if the extent of tissue 

involvement was difficult to judge pre-operatively.  Fixation holes of 1.7mm diameter were added (intended for 1.5mm 

screws).  Fluid transfer holes of 2mm diameter were spaced arbitrarily across the orbital component – but kept away from 

the implant edge.  The implant designs were verified by the prescribing surgeon via emailed images and a 3D PDF - and then 

sent for fabrication.  A satin surface finish was requested – as well as post-fabrication reaming for the screw holes.    

 

 

Figure 1: Implant designs for case 1 

 

Prior to surgery, a medical model of the digitally-planned excision was fabricated, and delivered with the finished implant 

components for sterilisation at the hospital.  In theatre, a pre-trecheal approach was used for site exposure – aiming to 

achieve good post-operative aesthetics by positioning the incision behind the hairline.  The tumour excision was performed, 

and the implants placed successfully.  No significant modifications to the pre-operative digital or clinical surgical plans were 

required. 

 

Case 1 – results 

 

This case had a four year follow-up at the time of writing.  The patient’s exophthalmos was reduced by 4mm – though was 

not wholly eliminated.  Post-operatively there was a black spot in the patient’s visual field at the far left of their gaze – this 

persists.  All other pre-operative symptoms were resolved – with a good initial aesthetic result.  Three years-on from the 



 

 

procedure, the patient complained of soft tissue hollowing around the temporal implant region – this was corrected by 

transferring fat grafts into the area.   

 

Subjective evaluation by the surgeon deemed the single-piece orbital implant design to have resulted in some difficulty with 

positioning the device intra-orbitally.  The surgeon judged a clear and noticeable reduction in surgery duration versus 

previous cases undertaken with conventional or semi-digital methods.  However, quite obviously there remain no direct 

comparisons for the same patients.  The total cost of the digital surgical planning, anatomical models, and patient-specific 

implants to the NHS was £1988.00 - excluding Value Added Tax (VAT). 

 

The surgical team highlighted three tentative hypotheses for consideration in subsequent cases: the single-piece design of the 

orbital component led to the black spot in the visual field (by preventing perfect placement); the on-lay orbital component 

design caused residual (minimal) post-operative exophthalmos by reducing the orbital volume; and exaggerated fixation tab 

lengths to permit larger excisions than planned are a worthy inclusion (albeit not required in this case).     

 

Case 2 - methods 

 

Patient 2 presented with left-eye exophthalmos, headaches, seizures, and decreasing vision.  Following consultation and pre-

operative CT imaging, a left skull-base meningioma was diagnosed – extending to the temporal bone and posterior orbit.  An 

identical method was applied to this case as for patient 1 – up to and including the stage of reconstructing the planned 

excision by mirroring healthy contralateral anatomy on the virtual model.  This time, as shown by figure 2 a three-

component implant design was modelled (0.5mm thickness) – on the basis of being in-laid into the defect margin.  The three 

component design was selected with the aims of addressing the orbital component-placement issue from case 1, and to make 

the overall implant success less dependent on the success of each individual component.  The in-lay design was selected to 

target the orbital volume hypothesis from case 1.  A diamond mesh pattern was embossed into the implant components with 

a speculative aim of improving any future radiotherapy delivery - in case of disease recurrence.  Countersinks were 

designed-in at the points of fixation.  Again, the implant design was verified by the prescribing surgeon – with the same 

post-fabrication finishing processes requested. 

 

 

Figure 2: Implant designs for case 2 

 



 

 

In theatre, a coronal approach was utilised.  The tumour excision was performed – mostly according to the pre-operative 

clinical and digital plan with one key exception.  Excision of bone from the posterior orbit was more difficult than expected 

– as well as being less critical than considered during the plan.  The orbital roof component required intra-operative 

trimming in order to fit the smaller-than-anticipated defect.  This slightly reduced the surgery-duration benefit of using the 

digital approach, and proved to be a difficult task for the available tools because of the hardness of the implant material. 

 

Case 2 – results 

 

This case had a three year follow-up at the time of writing.  The patient’s exophthalmos was reduced –again, not wholly 

eliminated, but demonstrating a better reduction than for patient 1.  Post-operatively there was one further issue - seroma of 

the soft tissues – which resolved spontaneously over eight weeks.  All other pre-operative symptoms were resolved – with a 

good aesthetic result.  There has been no disease recurrence and therefore no need for radiotherapy. 

 

Subjective evaluation by the surgeon deemed splitting the orbital reconstruction into two components to have improved the 

manoeuvrability of the lateral component relative to case 1.  Aside from having to trim the posterior aspect of the orbital roof 

component, some difficulty was noted with achieving the butt-joint interface between the two orbital components.  

Independent fixation for the components was highlighted as being of particular importance to minimise the impact of these 

unexpected challenges – tiny positioning compensations could be made.  Again, the surgeon judged a clear and noticeable 

reduction in surgery duration versus previous cases undertaken with conventional or semi-digital methods – though not as 

significant a reduction as would be possible without the noted issues.  The total cost of the digital surgical planning, 

anatomical models, and patient-specific implants to the NHS was £2590.00 - excluding VAT. 

 

The surgical team highlighted three tentative hypotheses for consideration in subsequent cases: a lack of built-in margin 

flexibility reduced the impact from the digital workflow by forcing time-consuming implant modifications; the missing bony 

surfaces did not need to be replaced entirely to achieve the desired functional results; and designing an in-lay implant rather 

than an on-lay implant did not fully solve the patient’s exophthalmos – so reconstructing a smaller portion of orbital roof 

may achieve full orbital volume correction.     

 

Case 3 – methods 

 

Figure 3: Guides and implants designs for case 3 



 

 

 

Patient 3 presented with left-eye exophthalmos, pain, decreasing vision, and a visual field defect.  Following consultation 

and pre-operative CT imaging, fibrous dysplasia was diagnosed in the patient’s left cranio-orbital region.  An identical 

method was applied to this case as for patients 1 and 2 – up to and including the stage of reconstructing the planned excision 

by mirroring healthy contralateral anatomy on the virtual model.  This time, as shown by figure 3, the excision margin 

included the critical aim of avoiding the frontal sinus.  As such, patient specific cutting guides were designed after 

highlighting the frontal sinus volume in the patient’s scan data and overlaying it onto the digital plan.  The guides were 

realised by layering a 2.5mm thickness of material onto the foundation of the patient’s original anatomy.  Care was taken to 

model a cutting ledge (around the outside edge of the guide) which was perpendicular to the sinus border - in case of being 

used to guide the saw directly.  Holes were added to provide the option of screw fixation.  A two-part guide design was 

deemed necessary in order to fit onto the anatomy without being obstructed by the undercuts of the orbit and sphenoid.  The 

two parts were designed to fit together with a notch feature – aiming to provide confidence in achieving correct positioning.  

Material was removed from the middle of the frontal guide – to accommodate potential further bone growth since the initial 

scan.  A small handle was modelled for this component – with a view towards providing stability during use.   

 

 

Figure 4: Inta-operative photographs of guided excision 

 

The implant design (0.7mm thickness) consisted of three components with functional independence and both margin and 

fixation flexibility.  A 1mm gap was deliberately left between the implant component edges and the defect edge – aiming to 

build-in scope for sub-optimal excision and implant location relative to the ideal scenario in the plan.  Similarly, a 0.5mm 

gap was inserted between the implant components for the same reason.  The orbital rim implant component incorporated 

recessed ledges running behind the intra-component gaps – targeting support of the other components without compromising 

flexibility.  Long fixation tabs were used as in the previous cases.  With the aim of addressing the residual exophthalmos 

from case 2, the orbital roof component extended only half-way posteriorly. 

 

 



 

 

Figure 5: Intra-operative photographs of implant assembly 

 

Identical pre-surgery verification, fabrication, and sterilisation actions were undertaken as for case 1 and 2 – with the 

exception of requesting a polished finish for the rim and orbital roof implant components.  In theatre, a coronal-flap 

approach was employed for access to the site.  In this case, the patient granted permission to publish images of the procedure 

and of the post-operative scans (figures 4-6).  Figure 4 illustrates how the neurosurgeon preferred to use the guide as a 

template to mark the bone – before cutting along the line with an unobstructed view.  The orbital guide was used to guide the 

saw directly – but from the brain-side of the already partially-completed excision.  The frontal sinus was successfully 

avoided.  All of the components performed exactly as planned – and the final implants (figure 5) were fixed quickly and 

easily.         

 

Case 3 – results 

 

This case had a two year follow-up at the time of writing.  All pre-operative symptoms were fully relieved – including 

exophthalmos.  Some post-operative ptosis of the temporalis muscle was noted by the surgeon.  Additionally, left upper lid 

dermatochalasis was present – but no procedures were taken to correct this.   

 

 

Figure 6: Images from post-operative scan    

 

Subjective evaluation by the surgeon centred on the ease of implant insertion – following guided excision.  This achieved an 

accurate translation of the plan into theatre.  Figure 6 shows the successfully-inserted implants in a post-operative scan.  The 

interfacing-but-independent implant components anticipated all reasonable plan deviations (though none were tested here).  

Again, the surgeon judged a clear and noticeable reduction in surgery duration because of this fully-digital method.  The 

total cost of the digital surgical planning, anatomical models, patient-specific guides, and patient-specific implants to the 

NHS was £2828.00 - excluding VAT. 

 

The surgical team highlighted four tentative hypotheses for consideration in subsequent cases: a lack of holes in the temporal 

region of the frontal-cranial implant prevented suturing of the temporalis muscle which led to minor ptosis; good fit and 

extremely quick fixation of the implant components was achieved by using guides – which should be used to translate 

virtually planned cuts wherever possible; implant component functional, fixation, and margin flexibility provided confidence 

in anticipating possible plan deviations and should be employed wherever possible; an in-lay design and restricting the 

posterior extension of the orbital roof component to the orbit “equator” contributed to a full resolution of exopthalmos in this 

case.     

 



 

 

Case 4 - methods 

 

Patient 4 presented with right-eye exophthalmos.  Following consultation and pre-operative CT imaging, a right cranio-

temporal-orbital meningioma was diagnosed – with intra-cranial involvement.  Identical technical procedures were 

undertaken as in cases 1-3 to design and fabricate devices.  As shown in figure 7, recommendations from those cases were 

followed: multi-part guides were designed to translate the planned excision margins into theatre; the implants (0.6mm 

thickness) were designed to leave a 1.5mm gap to the defect edge to address fixation and margin flexibility; the orbital 

implant components incorporated deliberate gaps so as to remain functionally independent; all components were in-lay 

designs – with the orbital parts extending only half-way posteriorly; fixation tabs were extended to accommodate larger-

than-anticipated excisions; and a mesh pattern was applied to pre-empt potential radiotherapy and provide suture retention 

options for supporting the temporalis.  Uniquely to previous cases, the guides also translated the cutting locations for 

osteotomising a portion of the lateral orbital rim – which was temporarily removed to improve access.  The orbital implant 

component fixation arms were lengthened to serve a secondary function – fixing the osteotomised bone flap back in its 

original position.  A satin finish was requested for the metal implants – and the same pre-theatre routine undertaken as 

described for other cases.   

 

 

Figure 7: Guides and implants designs for case 4 

 

In theatre, a coronal approach was used to access the affected area.  The lesion was successfully excised – and the lateral rim 

bone flap replaced.  All components fitted and functioned exactly as planned.  No intra-operative complications were 

experienced.      

 

Case 4 – results 

 

This case had a 22-month follow-up at the time of writing.  All pre-operative symptoms were fully relieved.  The patient was 

concerned with palpability of fixation plates used for an extra craniotomy performed for improved access (but not involved 

in the craniofacial planning).  However, no revision procedures were necessary.  There has been no disease recurrence – and 

so no post-operative radiotherapy.   

 

Subjective evaluation by the surgeon noted the particular importance of the guides in this case because of the morphological 

complexity of the affected area.  The total cost of the digital surgical planning, anatomical models, patient-specific guides, 

and patient-specific implants to the NHS was £2890.00 - excluding VAT. 

 



 

 

The surgical team highlighted how this case offered a validation of the considerations taken forward from previous cases. 

   

Case 5 - methods 

 

Patient 5 presented with, discharge from the left ear, swelling of the temporal fossa and decreasing vision.  Following 

consultation and pre-operative CT imaging, a left spheno-orbital meningioma was diagnosed – with middle cranial fossa 

involvement.  As noted previously, this case (figure 8) was designed for fabrication from PEEK.  Otherwise, identical 

technical procedures were undertaken as in cases 1-4 to design and fabricate guides and implants.  As with case 4, a guide 

was designed to temporarily osteotomise a bone segment in order to improve access – in this case, from the zygoma.  A 

temporal guide component included small tabs to indicate areas of bone planned for burring away.  The PEEK implant was 

split into two components – one reconstructing the lateral orbit and the temporal bone, and the other reconstructing the 

potential excision of the glenoid fossa.  Generally, an in-lay approach was used across both components - though tabs were 

designed into the temporal device – to brace against the residual cranium in the areas where guided burring was planned.  

This was surgeon-preference for a bracing tab-style fixation – rather than relying on mini-plates, which caused concern 

about implant-brain interference in the event of traumatic impact.  2.1mm diameter holes were added into the tabs for 

fixation with 2mm screws.  Unlike the titanium implants, the PEEK was of a 3-7mm varied thickness to take advantage of 

the material’s lower density and contribute to reconstructing the full bone volume.  There were no significant modelling or 

design freedom restrictions to accommodate CAM limitations versus AM.  This can be attributed to using five-axis milling, 

and the geometry of the implant being naturally sympathetic to this process.    

 

 

Figure 8: Guides and implants designs for case 5 

 

In theatre, a coronal approach was used to access the affected area.  The TMJ was not resected after being judged as too 

high-risk.  The glenoid fossa implant component was left-out without affecting the performance of the temporal component.  

The bone flap was osteotomised for access and replaced successfully using mini-plates.     

 

Case 5 - results 

 

This case had a one year follow-up at the time of writing.  All pre-operative symptoms were relieved though there were 

significant post-operative complications.  The patient experienced expressive dysphasia for 24 hours post-operatively.  The 

clinical team hypothesised ear and brain involvement as the cause – exacerbated by the ear being exposed to the surrounding 

environment.  Additionally, there was a superficial wound infection for which the patient was taken to theatre for drainage 



 

 

and washing of the wound.  The decision was taken to leave the alloplastic reconstruction in place and instigate a long-term 

antibiotic routine.  This was successful and negated secondary reconstruction surgery.  

 

Subjective evaluation by the surgeon highlighted the further validation of the digital process and evolving design 

considerations provided by this case.  The total cost of the digital surgical planning, anatomical models, patient-specific 

guides, and patient-specific implants to the NHS was £5644.00 - excluding VAT. 

 

The surgical team highlighted two tentative hypotheses for consideration in future cases: choosing PEEK for this category of 

cases has no demonstrated downside (in this one example) aside from an increase in cost; and using a PEEK-tab fixation 

model (with guided bone burring) could offer a more stable fixation than relying exclusively on mini-plates. 

 

Summary 

 

The case studies corroborated design considerations B, C, D, E, F, G, K, M, O, and S from Table 1 – and introduced nine 

new considerations as shown in Table 2. 

 

 

New design considerations from case studies: 

Consider multi-part implant designs – particularly for the lateral orbital wall and orbital roof. 

To enable easy manipulation of the components into the correct (pre-planned) positions.  

Consider robust independent fixation solutions for each implant component. 

To build-in functional independence in case one component is omitted from the final reconstruction. 

Consider exaggerated fixation tab lengths. 

To provide margin flexibility when excisions are larger than planned. 

Consider designing-in a deliberate gap between the planned margin and the main implant body. 

To provide margin flexibility when excisions are smaller than planned. 

Consider designing-in a deliberate gap between interfacing implant components. 

To provide positioning flexibility and avoid chain-tolerance errors in the event that one or more components is fixed sub-optimally. 

Consider using in-lay orbital implant designs. 

To lower the risk of reducing the orbital volume. 

Consider restricting orbital roof component extents to the anterior half of the globe. 

To lower the risk of reducing the orbital volume.  

Consider including fixation tabs in PEEK implant designs – with guided burring of residual bone at the interface points. 

To offer a more stable fixation option – or when preferred over mini-plates. 

Consider using AM titanium where specific PEEK properties are not required. 

To achieve similar benefits at lower cost. 

 

Table 2: Collated and consolidated design considerations from case studies 

 

 

 



 

 

Discussion  

 

Design considerations from the literature in Table 1, and from the new primary data in Table 2, together demonstrate a clear 

progression from macro to micro considerations for successfully designing and using state-of-the-art implants.  Generally, 

considerations from the literature address contextual and materials issues well – and are supported by the new experiences 

described in this study.  Specific design detailing issues are covered in considerably greater detail by the case studies – 

though with some key limitations as evaluated later in this section.       

 

Design considerations synthesis 

 

All five implants presented in the case studies were evaluated as clinical improvements over conventional methods in terms 

of: cosmetic accuracy; replicating complex geometries; reducing surgery durations; avoiding the downsides of autologous 

reconstructions; basing reconstructions on mirrored healthy anatomy; and helping to enable successful single-step 

procedures.  After iterative improvements between cases, outcomes corroborated the literature in four other areas: using 

guides to accurately translate plans into theatre; achieving a more accurate implant fit; using PEEK for cases requiring 

radiolucency for post-operative radiotherapy and imaging; and applying holes or a mesh pattern across the main implant 

surfaces.   

 

Post-operative soft-tissue (including muscle) concerns in cases 1 and 3, echo similar issues from other studies [39, 46, 52].  

Currently, virtual soft-tissue predictions are difficult [106] and were not available in any of the cases 1-5.  There was a 

reliance on clinical judgement instead – with no explicit design changes made beyond aiming for good symmetry.  

Recommendations where available are split between anticipating soft-tissue atrophy by over-correcting contours [106], 

mirroring soft tissues as well as hard tissues when planning implant forms [49], and noting that soft tissue asymmetry cannot 

always be dealt with using implants alone [44].  This is an important area for future investigation.  The palpability issue in 

case 4 was not directly related to digitally designed and fabricated devices, but supports a general aim of making implants as 

small as possible – to avoid this and lower the risk of exposure [15].   

 

The detailed design issues raised by the case studies have flexibility as the major theme – of fit, of function, and of margins.  

Alternative margin solutions to those summarised in Table 2 appear muddled – including the notion of deliberately designing 

over-sized implants, before adjusting them in-theatre once the margins are finalised [106].  Whilst this offers an answer to 

intra-operatively modified margins, it introduces extra time into the procedure as a matter of routine.  The solutions from 

cases 1-4 of using long tabs, and deliberate gaps between the residual anatomy and the main implant components, at least 

create the probability of instant insertion without sacrificing fit and margin flexibility.  The opposite solution has also been 

proposed – with deliberately-undersized implants having large gaps to the bone filled with cement [102].  This would still 

under-exploit the time advantages created by using digital surgical planning and custom implants.   

 

Smaller margins than anticipated are difficult to foresee in similar cases – especially with using slice-by-slice analysis of the 

CT scan data to delineate the lesion at the point of planning [52].  Planning generous excisions [23] is supported, as is the 

use of guides to translate them into theatre – see Table 1.  However, guides are not reported as often as expected (given the 

previously described benefits) which may indicate why PEEK’s intraoperative modifiability is often cited as a significant 

positive.  On the question of modifications versus plans, Table 1 lists seven reports which cited standard mini-plate fixation 

for PEEK devices.  The solution from case 5 is unique in incorporating titanium-device-style tab fixation.  The concern 

about the implant sinking into the skull is shared by Jalbert et al. [52], who chamfer the bone edge and contacting implant 



 

 

edge to achieve a robust brace.  Before judging effectiveness, a comparison would be needed between the time-taken to burr-

away tab-acceptance grooves as in case 5, and the time taken to chamfer the bone and implant edges.  Simpler edge-overlap 

approaches are demonstrated by Guevara-Rojas et al. [22] who also add fixation holes to the implant edge.  For implant 

fitting flexibility, experience from the case studies which recommends multiple part devices is supported by Goodson et al. 

[50] – for aesthetic and insertion-path independence reasons.   

 

Accurate cost assessments across techniques and materials are difficult because of variations between service provision, 

currencies, and the previously-identified bias towards PEEK devices in the literature – compared to AM titanium.  

Furthermore, titanium is sometimes identified as the chosen material – without full clarity on the fabrication method.  

Manrique et al. [99] provide an average cost for PEEK devices of $8493 from six cases.  This is at least somewhat similar to 

the cost of the PEEK implant in case 5.  The AM titanium devices were of a lower cost in cases 1-4.  This requires more 

evidence from future studies, but on the basis of the primary data available to the authors, Table 2 contains a consideration 

for using AM titanium where specific PEEK properties are not required.     

 

Figure 9 presents a framework for design considerations in complex craniofacial implants – evidenced by literature and new 

case studies from this article.  It does not cover all considerations or stages a clinician or engineer would address in the 

specification and design processes – just those extracted using the methods in this study.  This is to begin to address the 

evidence-gap which exists in justifying and implementing CAD / AM / CAM devices, without becoming a subjective 

instructional guide, or prescribing answers to support a given interest.  Avoiding specific instructions also has the aim of 

producing a framework which is generalisable across implant services and design tools where possible.  Multi-disciplinary 

management across specialties is important in complex cases [91] – and translating between competencies (including design 

or engineering) is difficult [41].  Figure 9 proposes a structure for thinking about key considerations across specialties.    

 

 

Figure 9: Design considerations framework  

 



 

 

Study limitations  

 

Although the findings in this paper are drawn from triple-sourced literature review, from primary-data, or from a 

combination of both, key limitations persist and should be highlighted explicitly.  The primary data comes from a single 

hospital unit and a single surgeon in collaboration with a single implant design service comprising two design-engineers.  

The conclusions drawn from this data have only been shown to apply in these cases – or in isolated cases within this series.  

The primary data is skewed towards titanium implants – and the secondary data review skewed towards PEEK.  Further 

work is required on both fronts to address these imbalances and small sample sizes.  Surgery duration evaluations from the 

primary data relied on subjective estimates – future work on health economics within this and other hospital units is required 

to build a fuller picture. Finally, it should be noted that the varied AM titanium surface finishes were selected based on 

surgeon preference – the implications of these choices provide another avenue for future investigations.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Conclusions  

 

This study has extracted 19 design considerations for complex craniofacial implants from secondary sources, and 9 unique 

design considerations from new case series data.  The considerations have been arranged into a structured framework for use 

across specialties in the procurement and delivery of CAD / AM / CAM implants.  It encompasses justifications-for-use, 

modelling strategies, materials selection, and design detailing.      

 

Future work must involve long-term follow-up of the case series patients, generating and reviewing a larger body of 

evidence to expand (or contract) the considerations framework, and validation of the case-series-derived considerations 

across a larger sample.  As a general note, the authors recommend describing design considerations and decisions in detail 

when publishing on CAD / AM / CAM to allow audiences to develop an understanding of key decisions – beyond the choice 

of technology.   
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