1,687 research outputs found

    Interim report on the ground-water resources of Manatee County, Florida

    Get PDF
    A large part of western Manatee County is devoted to the growing of winter vegetables and citrus fruits. As in most of peninsular Florida, rainfall in the county during the growing season is not sufficient for crop production and large quantites of artesian water are used for irrigation. The large withdrawals of artesian water for irrigation result in a considerable decline of the artesian head in the western part of the county. This seasonal decline of the artesian head has become larger as the withdrawal of artesian water has increased. The lowering of the fresh-water head in some coastal areas in the State has resulted in an infiltration of sea water into the water-bearing formations. The presence of salty water in the artesian aquifer in parts of the coastal area of Manatee County indicates that sea water may also have entered the waterbearing formations in this area as a result of the decline of artesian pressure during the growing season. The purpose of the investigation is to make a detailed study of the geology and ground-water resources of the county, primarily to determine whether salt-water encroachment has occurred or is likely to occur in the coastal area. (PDF contains 38 pages.

    The endometrial capillaries during the normal menstrual cycle: a morphometric study

    Get PDF
    The areas of the capillary lumen, the entire capillary, the endothelial cells and the adventitia, as well as the thickness of the endothelial cell layer and the adventitia were studied using morphometric methods in endometrial samples from 34 fertile women who had a hormonal profile compatible with normal ovarian function. The biopsies were grouped around the luteinizing hormone surge. The results were calculated as mean values of 72-h periods and related to the mean levels of oestradiol and progesterone circulating in plasma 72 h prior to the biopsy. The results indicated that the sub-epithelial capillary plexus of the human endometrium undergoes dynamic changes during the normal menstrual cycle with a significant dilatation of the vessels during the post-ovulatory phase. A significant correlation was found between the area of the capillary lumen and the mean level of progesterone circulating in the plasma 72 h prior to the biopsy (P = 0.037). We conclude that the ovarian steroids produced during the normal menstrual cycle are likely to influence sub-epithelial vascularization causing dilatation in the post-ovulatory phase. This dilatation of the sub-epithelial capillaries may be related to the development of oedema appearing in the stroma at the time of the expected implantation. The possible functional significance of the capillary dilatation in terms of implantation, however, needs to be further investigate

    The GALFA-HI Compact Cloud Catalog

    Full text link
    We present a catalog of 1964 isolated, compact neutral hydrogen clouds from the Galactic Arecibo L-Band Feed Array Survey Data Release One (GALFA-HI DR1). The clouds were identified by a custom machine-vision algorithm utilizing Difference of Gaussian kernels to search for clouds smaller than 20'. The clouds have velocities typically between |VLSR| = 20-400 km/s, linewidths of 2.5-35 km/s, and column densities ranging from 1 - 35 x 10^18 cm^-2. The distances to the clouds in this catalog may cover several orders of magnitude, so the masses may range from less than a Solar mass for clouds within the Galactic disc, to greater than 10^4 Solar Masses for HVCs at the tip of the Magellanic Stream. To search for trends, we separate the catalog into five populations based on position, velocity, and linewidth: high velocity clouds (HVCs); galaxy candidates; cold low velocity clouds (LVCs); warm, low positive-velocity clouds in the third Galactic Quadrant; and the remaining warm LVCs. The observed HVCs are found to be associated with previously-identified HVC complexes. We do not observe a large population of isolated clouds at high velocities as some models predict. We see evidence for distinct histories at low velocities in detecting populations of clouds corotating with the Galactic disc and a set of clouds that is not corotating.Comment: 34 Pages, 9 Figures, published in ApJ (2012, ApJ, 758, 44), this version has the corrected fluxes and corresponding flux histogram and masse

    Ongoing Galactic Accretion: Simulations and Observations of Condensed Gas in Hot Halos

    Full text link
    Ongoing accretion onto galactic disks has been recently theorized to progress via the unstable cooling of the baryonic halo into condensed clouds. These clouds have been identified as analogous to the High-Velocity Clouds (HVCs) observed in HI in our Galaxy. Here we compare the distribution of HVCs observed around our own Galaxy and extra-planar gas around the Andromeda galaxy to these possible HVC analogs in a simulation of galaxy formation that naturally generates these condensed clouds. We find a very good correspondence between these observations and the simulation, in terms of number, angular size, velocity distribution, overall flux and flux distribution of the clouds. We show that condensed cloud accretion only accounts for ~ 0.2 M_solar / year of the current overall Galactic accretion in the simulations. We also find that the simulated halo clouds accelerate and become more massive as they fall toward the disk. The parameter space of the simulated clouds is consistent with all of the observed HVC complexes that have distance constraints, except the Magellanic Stream which is known to have a different origin. We also find that nearly half of these simulated halo clouds would be indistinguishable from lower-velocity gas and that this effect is strongest further from the disk of the galaxy, thus indicating a possible missing population of HVCs. These results indicate that the majority of HVCs are consistent with being infalling, condensed clouds that are a remnant of Galaxy formation.Comment: 10 pages, 6 figures, ApJ Accepted. Some changes to techniqu
    • ā€¦
    corecore