3,836 research outputs found

    A Model for Structure Formation Seeded by Gravitationally Produced Matter

    Get PDF
    This model assumes the baryons, radiation, three families of massless neutrinos, and cold dark matter were mutually thermalized before the baryon number was fixed, primeval curvature fluctuations were subdominant, and homogeneity was broken by scale-invariant fluctuations in a new dark matter component that behaves like a relativistic ideal fluid. The fluid behavior could follow if this new component were a single scalar field that interacts only with gravity and with itself by a pure quartic potential. The initial energy distribution could follow if this component were gravitationally produced by inflation. The power spectra of the present distributions of mass and radiation in this model are not inconsistent with the measurements but are sufficiently different from the adiabatic cold dark matter model to allow a sharp test in the near future.Comment: 4 pages, 2 figures submitted to ApJ Letter

    Spherical Collapse and the Halo Model in Braneworld Gravity

    Get PDF
    We present a detailed study of the collapse of a spherical perturbation in DGP braneworld gravity for the purpose of modeling simulation results for the halo mass function, bias and matter power spectrum. The presence of evolving modifications to the gravitational force in form of the scalar brane-bending mode lead to qualitative differences to the collapse in ordinary gravity. In particular, differences in the energetics of the collapse necessitate a new, generalized method for defining the virial radius which does not rely on strict energy conservation. These differences and techniques apply to smooth dark energy models with w unequal -1 as well. We also discuss the impact of the exterior of the perturbation on collapse quantities due to the lack of a Birkhoff theorem in DGP. The resulting predictions for the mass function, halo bias and power spectrum are in good overall agreement with DGP N-body simulations on both the self-accelerating and normal branch. In particular, the impact of the Vainshtein mechanism as measured in the full simulations is matched well. The model and techniques introduced here can serve as practical tools for placing consistent constraints on braneworld models using observations of large scale structure.Comment: 20 pages, 16 figures; v2: minor addition to appendix; matches published version; v3: typos in Eqs. (20), (23) correcte

    Dynamics of a Dark Matter Field with a Quartic Self-Interaction Potential

    Get PDF
    It may prove useful in cosmology to understand the behavior of the energy distribution in a scalar field that interacts only with gravity and with itself by a pure quartic potential, because if such a field existed it would be gravitationally produced, as a squeezed state, during inflation. It is known that the mean energy density in such a field after inflation varies with the expansion of the universe in the same way as radiation. I show that if the field initially is close to homogeneous, with small energy density contrast delta rho /rho and coherence length L, the energy density fluctuations behave like acoustic oscillations in an ideal relativistic fluid for a time on the order of L/|delta rho /rho|. This ends with the appearance of features that resemble shock waves, but interact in a close to elastic way that reversibly disturbs the energy distribution.Comment: 7 pages, 5 figures, submitted to Phys Rev

    Noninteracting dark matter

    Get PDF
    Since an acceptable dark matter candidate may interact only weakly with ordinary matter and radiation, it is of interest to consider the limiting case where the dark matter interacts only with gravity and itself, the matter originating by the gravitational particle production at the end of inflation. We use the bounds on the present dark mass density and the measured large-scale fluctuations in the thermal cosmic background radiation to constrain the two parameters in a self-interaction potential that is a sum of quadratic and quartic terms in a single scalar dark matter field that is minimally coupled to gravity. In quintessential inflation, where the temperature at the end of inflation is relatively low, the field starts acting like cold dark matter relatively late, shortly before the epoch of equal mass densities in matter and radiation. This could have observable consequences for galaxy formation. We respond to recent criticisms of the quintessential inflation scenario, since these issues also apply to elements of the noninteracting dark matter picture.Comment: 37 pages, 3 figure

    Dark energy in motion

    Get PDF
    Recent large-scale peculiar velocity surveys suggest that large matter volumes could be moving with appreciable velocity with respect to the CMB rest frame. If confirmed, such results could conflict with the Cosmological Principle according to which the matter and CMB rest frames should converge on very large scales. In this work we explore the possibility that such large scale bulk flows are due, not to the motion of matter with respect to the CMB, but to the flow of dark energy with respect to matter. Indeed, when dark energy is moving, the usual definition of the CMB rest frame as that in which the CMB dipole vanishes is not appropriate. We find instead that the dipole vanishes for observers at rest with respect to the cosmic center of mass, i.e. in motion with respect to the background radiation.Comment: 9 pages, 1 figure. Essay selected for "Honorable Mention" in the 2006 Awards for Essays on Gravitation (Gravity Research Foundation

    Probing fundamental physics with pulsars

    Full text link
    Pulsars provide a wealth of information about General Relativity, the equation of state of superdense matter, relativistic particle acceleration in high magnetic fields, the Galaxy's interstellar medium and magnetic field, stellar and binary evolution, celestial mechanics, planetary physics and even cosmology. The wide variety of physical applications currently being investigated through studies of radio pulsars rely on: (i) finding interesting objects to study via large-scale and targeted surveys; (ii) high-precision timing measurements which exploit their remarkable clock-like stability. We review current surveys and the principles of pulsar timing and highlight progress made in the rotating radio transients, intermittent pulsars, tests of relativity, understanding pulsar evolution, measuring neutron star masses and the pulsar timing array.Comment: 6 pages, 1 figure, to appear in the proceedings of IAU XXVII GA - JD3 - Neutron Stars: Timing in Extreme Environments XXVII IAU General Assembly, Rio de Janeiro, Brazil, 3-14 August 200

    Master planning communities with wildlife in mind

    Get PDF
    Master-planned communities can be designed for the protection of wildlife while providing an aesthetically pleasing, eco-friendly, and affordable community for people. This study was conceived from a background of academic studies in plant biology, forestry, and landscape architecture, and a desire to rescue wildlife habitat from the encroachment of urban sprawl. A variety of books and periodicals were consulted, along with a few web sites. The primary threats to wildlife habitat are habitat fragmentation, pollution, and exotic invasive species of plants, animals, insects, and diseases. Many aspects of planning are addressed, including wildlife corridors, site selection, connecting habitat patches, and stormwater management. With careful planning, new communities can incorporate the principles of sustainable design, building inside nature’s envelope, green infrastructure, new urbanism, and Smart Growth to protect and preserve wildlife habitat

    Engaging Undergraduate Students In Spectroscopy Research Via Development And Incorporation Of Advanced Data Analysis Techniques

    Get PDF
    The rapidity with which large amounts of spectroscopic data can now be collected is presently driving interest in developing techniques to improve the speed with which spectra can be analyzed. While desirable in a research setting to avoid bottlenecks in the lab, these techniques will also be essential to the commercialization of high resolution spectroscopic methods for analysis of complex mixtures. At the same time, many undergraduate students are intrigued by the concept of data analytics and attracted by the growing job market related to this field. We will present our incorporation of analysis techniques appropriate for large data sets into undergraduate spectroscopy research experiences. Through analysis of high sensitivity microwave spectra of complex mixtures of weakly bound complexes, undergraduate students from a wide range of majors gain skill sets that put them ahead of their peers in areas such as problem solving, basic coding, and computer skills (Excel, DOS, Linux, Python, Mathcad). The majority of spectroscopy undergraduate research students at Eastern Illinois University do not go on to chemistry careers, and these additional skills that they learn provide excellent preparation for a wide range of career choices
    • …
    corecore