
University of Pennsylvania
ScholarlyCommons

Department of Physics Papers Department of Physics

3-15-2010

Spherical Collapse and the Halo Model in
Braneworld Gravity
Fabian Schmidt
California Institute of Technology

Wayne Hu
University of Chicago

Marcos Lima
University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/physics_papers

Part of the Physics Commons

Suggested Citation:
Schmidt, F., W. Hu and M. Lima. (2010). "Spherical collapse and halo model in braneworld gravity." Physical Review D. 81, 063005.

© The American Physical Society
http://dx.doi.org/10.1103/PhysRevd.81.063005

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/physics_papers/29
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Schmidt, F., Hu, W., & Lima, M. (2010). Spherical Collapse and the Halo Model in Braneworld Gravity. Retrieved from
http://repository.upenn.edu/physics_papers/29

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76364695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fphysics_papers%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/physics_papers?utm_source=repository.upenn.edu%2Fphysics_papers%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/physics?utm_source=repository.upenn.edu%2Fphysics_papers%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/physics_papers?utm_source=repository.upenn.edu%2Fphysics_papers%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=repository.upenn.edu%2Fphysics_papers%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/physics_papers/29?utm_source=repository.upenn.edu%2Fphysics_papers%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/physics_papers/29
mailto:repository@pobox.upenn.edu


Spherical Collapse and the Halo Model in Braneworld Gravity

Abstract
We present a detailed study of the collapse of a spherical perturbation in Dvali-Gabadadze-Porrati (DGP)
braneworld gravity for the purpose of modeling simulation results for the halo mass function, bias, and matter
power spectrum. The presence of evolving modifications to the gravitational force in the form of the scalar
brane-bending mode leads to qualitative differences to the collapse in ordinary gravity. In particular,
differences in the energetics of the collapse necessitate a new, generalized method for defining the virial radius
which does not rely on strict energy conservation. These differences and techniques apply to smooth dark
energy models with w ≠ — 1 as well. We also discuss the impact of the exterior of the perturbation on collapse
quantities due to the lack of a Birkhoff theorem in DGP. The resulting predictions for the mass function, halo
bias, and power spectrum are in good overall agreement with DGP N-body simulations on both the self-
accelerating and normal branch. In particular, the impact of the Vainshtein mechanism as measured in the full
simulations is matched well. The model and techniques introduced here can serve as practical tools for placing
consistent constraints on braneworld models using observations of large-scale structure.
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We present a detailed study of the collapse of a spherical perturbation in Dvali-Gabadadze-Porrati

(DGP) braneworld gravity for the purpose of modeling simulation results for the halo mass function, bias,

and matter power spectrum. The presence of evolving modifications to the gravitational force in the form

of the scalar brane-bending mode leads to qualitative differences to the collapse in ordinary gravity. In

particular, differences in the energetics of the collapse necessitate a new, generalized method for defining

the virial radius which does not rely on strict energy conservation. These differences and techniques apply

to smooth dark energy models with w � �1 as well. We also discuss the impact of the exterior of the

perturbation on collapse quantities due to the lack of a Birkhoff theorem in DGP. The resulting predictions

for the mass function, halo bias, and power spectrum are in good overall agreement with DGP N-body

simulations on both the self-accelerating and normal branch. In particular, the impact of the Vainshtein

mechanism as measured in the full simulations is matched well. The model and techniques introduced

here can serve as practical tools for placing consistent constraints on braneworld models using

observations of large-scale structure.

DOI: 10.1103/PhysRevD.81.063005 PACS numbers: 95.30.Sf, 95.36.+x, 98.80.�k, 98.80.Jk

I. INTRODUCTION

Modified gravity models have attracted a great deal of
interest recently as an alternative explanation of the ob-
served accelerated expansion of the Universe [1–5]. In
order for this scenario to work, gravity must be signifi-
cantly modified from general relativity (GR) on cosmo-
logical scales, but has to reduce to GR locally in order to
satisfy stringent solar system constraints at a few AU.
Thus, a working modified gravity model has to include a
nonlinear mechanism to restore GR in high-density envi-
ronments, which can have a noticeable impact on the
formation of large-scale structure on intermediate scales
of a few to tens of Mpc [6–9].

One popular modified gravity scenario is the Dvali-
Gabadadze-Porrati (DGP) braneworld model [10]. Here,
a four-dimensional Friedmann-Robertson-Walker universe
is imbedded as a brane in five-dimensional Minkowski
space. In this model, gravity is five-dimensional on the
largest scales, and becomes four-dimensional at scales
below the crossover scale rc, a fundamental parameter of
the model. The modification of the Friedmann equation
depends on the choice of embedding for the brane [11]
which yields two branches of the model: the self-
accelerating branch, on which accelerated expansion oc-
curs at late times without any cosmological constant or
dark energy, and the normal branch where no such accel-
eration occurs, and a brane tension or other form of stress-
energy with negative pressure has to be added on the brane.

On scales much smaller than the horizon and crossover
scales, DGP gravity can be described by an effective
scalar-tensor theory [12,13], where the additional scalar

degree of freedom, the brane-bending mode’ is associated
with displacements of the brane from its background po-
sition. The brane-bending mode yields an additional gravi-
tational force which influences dynamics of nonrelativistic
particles. On the normal branch of DGP, this force is
attractive, while it is repulsive in the self-accelerating
branch. Nonlinear interactions of ’, via the so-called
Vainshtein mechanism, ensure that it has tiny effects within
the Solar System. For values of rc of order the current
horizon, these interactions become important as soon as the
density contrast becomes of order unity. Hence, it is crucial
to consistently follow the full brane-bending mode inter-
actions in a cosmological simulation, as has recently been
done [9,14]. While we study the behavior of ’ in specific
DGP models, the form of the nonlinear interactions is
expected to be generic to braneworld models with large
extra dimensions [15,16].
Given the considerable computational expense of these

simulations, it is worthwhile to develop a model which
captures the main modified gravity effects, enabling fore-
casts and constraints properly marginalized over cosmo-
logical parameters. In the halo model of large structure
[17], which assumes that all matter is in bound dark matter
halos, the abundance and clustering of halos are deter-
mined by the linear power spectrum once characteristic
quantities of the collapse of a spherical perturbation are
determined, namely, the linear collapse threshold and the
virial radius or overdensity.
Spherical collapse is well studied for general relativity

with a cosmological constant (e.g., [18,19]), and has also
been explored for quintessence-type dark energy [20–22].
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A first study of spherical perturbations in the context of
DGP was undertaken in [6]. We extend previous studies by
deriving the full’ field profile of an isolated mass in closed
form, and by carefully defining the interior and exterior
forces during collapse along with the energetics implied by
the profile. In particular, the potential energy required for
the virial theorem and for the total Newtonian energy
differ, with the latter not being strictly conserved during
collapse.1 This lack of a conservation law also applies to
dark energy models with an equation of state w � �1. We
show how this problem can be circumvented by properly
defining the condition for virial equilibrium based on
forces.

We discuss the general properties and parametrization of
DGP models in Sec. II, and the spherical collapse calcu-
lation in Sec. III. The halo model calculations are outlined
in Sec. IV, and the results and comparisons with simula-
tions are given in Sec. V. We conclude in Sec. VI. The
Appendix contains derivations of the ’ profile and other
quantities needed in the collapse calculation, as well as a
discussion of the potential energy and virial theorem in
DGP.

II. DGP MODELS

In this section, we discuss the general properties of the
DGP models considered in this paper. The first model
(sDGP) is in the self-accelerating branch of DGP with
neither a cosmological constant nor spatial curvature.
During matter domination and beyond, the modified
Friedmann equation in sDGP reads

HsDGPðaÞ ¼ H0ð
ffiffiffiffiffiffiffiffi
�rc

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ma

�3 þ�rc

q
Þ; (1)

where

�rc � 1

4H2
0r

2
c

; �m � 8�G

3H2
0

��0; (2)

and ��0 is the average matter density today. This expansion
history is clearly different from Lambda cold dark matter
(�CDM) and corresponds to an effective dark energy with
weff ! �1=2 in the matter-dominated era at high redshifts.
For comparison, we will also consider an effective smooth
dark energy model (QCDM) with the same expansion
history as sDGP. Note that this expansion history, when
combined with the growth of structure near the horizon, is
in substantial conflict with data [23]. Moreover, the self-
accelerating branch is plagued by ghost issues [12,24,25]
when perturbed around the de Sitter limit. Despite these
problems, sDGP remains an interesting toy model for
acceleration from modified gravity.

The second scenario (nDGP) is in the normal branch of
DGP. In order to achieve acceleration, it is necessary to add
a stress-energy component with negative pressure on the
brane. We adopt the model introduced in [26], where a
general dark energy component is added on the brane, but
the geometry remains spatially flat. The equation of state of
this dark energy is adjusted so that the expansion history is
precisely �CDM:

HnDGPðaÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ma

�3 þ��

q
; (3)

again during matter domination and beyond. While �m

quantifies the true matter content in this model,�� is to be
seen as an effective cosmological constant relevant for the
expansion history only. This construction allows our nDGP
models to evade the otherwise stringent expansion history
constraints on rc with a true cosmological constant or
brane tension [27]. Likewise, it provides a class of models
where the observable impact of force modification is
cleanly separated from the background geometry. We con-
sider the two models of [26], nDGP-1 with rc ¼ 500 Mpc
and nDGP-2 with rc ¼ 3000 Mpc.
For notational simplicity, it is convenient to also phrase

the sDGP Friedmann equation in terms of an effective dark
energy component so that in both cases

H2 ¼ 8�G

3
ð ��þ �effÞ; (4)

where �� is the background matter density and �eff is
implicitly defined by Eqs. (1) and (3). In Table I, we
summarize the parameter choices for the simulated models
[9,26]; in case of sDGP, they are from the best-fitting flat
self-accelerating model of [23] to WMAP 5 yr, supernova,
and H0 data, while for the nDGP models, the expansion
history and primordial normalization match those of the
best-fitting �CDM model of [23].
On scales much smaller than both the horizon H�1 and

the crossover scale rc, DGP reduces to an effective scalar-

TABLE I. Parameters of the simulated DGP cosmologies.

QCDM sDGP �CDM nDGP-1 nDGP-2

�m 0.258 0.258 0.259 0.259 0.259

�� (eff.) 0 0 0.741 0.741 0.741

rc [Mpc] 1 6118 1 500 3000

�rc 0 0.138 0 17.5 0.487

H0 [km=s=Mpc] 66.0 66.0 71.6 71.6 71.6

100�bh
2 2.37 2.26

�ch
2 0.089 0.110

� 0.0954 0.0825

ns 0.998 0.959

Asð0:05 Mpc�1Þ 2:01610�9 2:10710�9

�8ð�CDMÞa 0.6566 0.7892

aLinear power spectrum normalization today of a �CDM model
with the same primordial normalization.

1The ‘‘total energy’’ here is defined for a Newtonian cosmol-
ogy, and its nonconservation does not imply violation of cova-
riant energy-momentum conservation.
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tensor theory with the brane-bending mode ’ representing
the scalar. Time variation in ’ induced by the nonrelativ-
istic motion of the matter involve the dynamical time and
can be neglected with respect to spatial derivatives in this
regime. The ’ field then couples to matter by contributing
to the metric potentials �, � defined by the line element

ds2 ¼ �ð1þ 2�Þdt2 þ a2ð1þ 2�Þdx2 (5)

as

� ¼ �N þ 1
2’; (6)

� ¼ ��N þ 1
2’; (7)

where �N is the Newtonian potential determined via the
usual Poisson equation

r2�N ¼ 4�G��: (8)

Here and throughout, spatial derivatives are physical, not
comoving.

While the motion of massive, nonrelativistic particles
such as cold dark matter is governed by the dynamical
potential �, the propagation of light is determined by the
lensing potential ð���Þ=2. This combination is not af-
fected by ’ due to the conformal invariance of electro-
magnetism. Hence, in DGP lensing mass is equal to the
‘‘actual’’ mass, while the dynamical mass differs unless
j’=�Nj � 1.

In the subhorizon, quasistatic regime, the equation for
the brane-bending mode can be written as (e.g., [28])

r2’þ r2c
3�

½ðr2’Þ2 � ðrirj’Þðrirj’Þ� ¼ 8�G

3�
��;

(9)

where the function �ðaÞ is given by

�ðaÞ ¼ 1� 2HðaÞrc
�
1þ _HðaÞ

3H2ðaÞ
�
: (10)

Here, the positive sign holds for the normal branch of DGP,
while the negative sign holds for the self-accelerating
branch. Note that the sign of � determines whether the
force mediated by the brane-bending mode is attractive
(�> 0, nDGP) or repulsive (�< 0, sDGP).

III. TOP-HAT COLLAPSE IN DGP

In this section, we review the dynamics of the collapse of
a top-hat density perturbations in the DGP case. We follow
[6,8] but pay special attention to the ’ profile as well as
subtleties in the potential energy and virial condition which
are specific to the Vainshtein mechanism (see the
Appendix for details).

We assume an initial top-hat density profile of the form

�ðrÞ � �� ¼
�
��; r � R;
0; r > R:

(11)

We show in the Appendix that the top-hat profile remains
top-hat during the collapse despite sweeping out an under-
density outside of R. We further show that forces inside of
R depend on the enclosed mass perturbation, and so we can
ignore the impact of any compensating underdensity on the
dynamics of collapse. Note that this is unique to a top-hat
density and does not hold for other density profiles, in
which case the collapse will not be self-similar anymore.
Given � and R, there are two important mass parame-

ters: the total mass M ¼ 4��R3=3 and the mass perturba-
tion �M ¼ 4���R3=3. The first is conserved during
collapse, while the second is the source of the ’ field
and gravitational potential, and is therefore useful in ex-
pressions involving the field profile. With the definition
� ¼ ��= ��, the two masses are related by

�M ¼ �

1þ �
M; (12)

such that they coincide at high overdensity.

A. Collapse dynamics

Given a metric specified by �, �, conservation of
energy-momentum is unchanged in DGP and leads to the
same equation of motion for the density perturbation as in
ordinary gravity. On scales much smaller than the horizon

€�� 4

3

_�2

1þ �
þ 2H _� ¼ ð1þ �Þr2�; (13)

where H ¼ _a=a denotes the Hubble rate, and dots denote
derivatives with respect to time. The modification of grav-
ity enters through the dynamical potential �: in GR, � ¼
�N [Eq. (8)], while in DGP � receives an additional
contribution from the brane-bending mode ’ following
Eq. (6).
The full profile of ’ around a top-hat perturbation is

derived in the Appendix. The key result is that in the
interior of the top hat, r2’ is constant like r2�N .
Hence, a pure top hat will stay top hat, so that Eq. (13)
can be considered as an ordinary differential equation
involving a spatially constant �. Note that as shown in
Appendix A 7, this is unique to a top hat and will be
violated as soon as more general spherically symmetric
profiles are considered. Moreover the implied scaling with
the local matter density is not true for the exterior of the top
hat (cf. [29]). We discuss this issue further in the Appendix.
While r2’ is spatially constant for r � R, it has a

nontrivial dependence on �� (see the Appendix). This
dependence can be cast in terms of an effective gravita-
tional constant:

r2’ ¼ 8��GDGPðR=R�Þ��; (14)

�GDGPðxÞ ¼ 2

3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x�3

p
� 1

x�3
G; (15)

where the Vainshtein radius
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R� ¼
�
16G�Mr2c

9�2

�
1=3

: (16)

If R � R�, �GDGP ¼ G=ð3�Þ and ’ is simply propor-
tional to the Newtonian potential, �NðrÞ ¼ G�M=r. We
call this the linearized limit as it applies to the �M � M
limit.

In the opposite limit relevant for ��= �� � 1, �GDGP /
ðR=R�Þ3=2 � 1. This is the Vainshtein limit and here ’	
G�M=R� is to leading order constant throughout the per-
turbation (Appendix A 2).

We can use mass conservation

M ¼ 4�

3
R3 ��ð1þ �Þ (17)

to rewrite the top-hat equation of motion in Eq. (13) as

€R

R
¼ H2 þ _H � 1

3
r2�

¼ � 4�G

3
½ ��þ ð1þ 3weffÞ�eff� � 4�GDGPðR=R�Þ

3
��;

(18)

where GDGP � Gþ �GDGP. In the second line, the effec-
tive equation of state is defined to be �3ð1þ weffÞ �
d ln�eff=d lna. These terms account for the effect of the
background expansion.

The terms involving the expansion history can be seen as
coming from an effective potential obtained by expanding
the Friedmann-Robertson-Walker metric around the center
of the perturbation [19,21]:

�eff ¼ � 1

2

�
€a

a

�
r2 ¼ 2�G

3
ð ��þ ð1þ 3weffÞ�effÞr2; (19)

up to a constant that is irrelevant for the dynamics (see
Appendix A 7). Note that r2�eff is spatially constant and
so its effect also preserves the top-hat profile.

Equation (18) can then be written in compact form as

€R

R
¼ 1

3
ðr2�eff þr2�Þ: (20)

Note that the pieces involving the matter density combine
as

r2ð�eff þ�NÞ ¼ 4�G½�þ ð1þ 3weffÞ�eff�; (21)

so as to reflect the total matter density � inside the top hat
as one would expect from Newtonian mechanics (see the
Appendix for further discussion).

B. Collapse calculation

We numerically solve the spherical collapse Eq. (18)
following [8]. Specifically, we start at an initial scale factor
ai ¼ 10�5, using lna as a time variable, and replacing R
with y defined as

y � R

Ri

� a

ai
; (22)

where Ri is the initial radius of the perturbation. Hence, we
start with y ¼ 0 and y0 ¼ ��i=3 as given by linear theory
in the matter-dominated epoch in terms of the initial den-
sity fluctuation �i. Here, we have set �GDGP ¼ 0 at ai,
since the effects of force modifications in DGP are negli-
gible at such an early time.
With these initial conditions, we can solve Eq. (18) as

y00 ¼ �H0

H
þ y0

�
1þH0

H

�
y��mH

2
0a

�3

2H2ðaÞ
GDGPðR=R�Þ

G



�
yþ a

ai

�
�: (23)

The overdensity relative to the background � is given by

�ðy; aÞ ¼ ð1þ �iÞ
�
ai
a
yþ 1

��3 � 1: (24)

Figure 1 shows the result of solving this equation in the
different models (bottom panel). We adjust �i so that
collapse, where R ¼ 0 or y ¼ �a=ai, occurs at a ¼ 1.
Turnaround, where dR=d lna ¼ 0 or y0 ¼ �a=ai, occurs
at a ¼ 0:54–0:56 for these models.
Figure 1 also shows the evolution of the gravitational

force strength GDGP=G. Since collapse is defined by � !
1 at a ! a0, the perturbation eventually becomes much
smaller than its Vainshtein radius in all models, so that
GDGP ! G. Thus, the evolution of forces between turn-

FIG. 1 (color online). Evolution of gravitational force GDGP=G
as a function of a for perturbations collapsing at a0 ¼ 1 in the
different DGP models (top panel). In each case, the thin lines
show the linearized force modification Eq. (26) whereas the
thick lines show the nonlinear case. We also show the evolution
of the scaled radius R=Ri of the perturbation in the bottom panel.
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around and collapse is significant. This evolution raises the
issue of the conservation of total energy of the perturbation
during collapse. We will return to this question in the
Appendix.

We then extrapolate the initial overdensity �i to a0 ¼ 1
using the linear growth equation, obtained from linearizing
Eq. (13):

€�þ 2H _� ¼ 4�Glin ���; (25)

where

GlinðaÞ ¼
�
1þ 1

3�ðaÞ
�
G (26)

is the linearized value of GDGP for R=R� � 1 in Eq. (23).
The resulting overdensity is the linearly extrapolated col-
lapse overdensity, which we call �c.

To expose the impact of the Vainshtein mechanism, we
will also consider linearized DGP collapse (note that this it
not linearized collapse) as the limit of no nonlinear ’
interactions. In this case, we replace GDGP with Glin in
Eq. (23). Note that the Vainshtein mechanism is strongest
for a spherically symmetric collapse and absent for a planar
collapse and so these two cases should encompass the
range of possibilities in the cosmological context [9,30].

For a top hat, the Vainshtein radius in units of R is given

by R=R� ¼ ð��Þ�1=3, where � is defined as

� ¼ 8

9�2ðaÞ ðH0rcÞ2�ma
�3; (27)

such that 1=� represents the density threshold at which the
top-hat perturbation crosses into its own Vainshtein radius.

Figure 2 shows � and �� as a function of a for a range
between turnaround (a	 0:5) and collapse (a ¼ 1) for the
simulated models of Table I. In the nDGP models, this
threshold increases substantially toward the present and the
Vainshtein suppression does not saturate until quite late in
the collapse. In fact in the nDGP-1 model, we shall see that
the perturbation virializes before the Vainshtein mecha-
nism can operate.

C. Virial radius and overdensity

Spherical top-hat collapse formally predicts a collapse to
a singularity at R ! 0. In reality, we expect that processes
such as violent relaxation will eventually establish virial
equilibrium. More specifically, the virial theorem relates
the kinetic energy of the body

T ¼
Z

d3x
1

2
�v2 ¼ 3

10
M _R2; (28)

where the last equality holds for a top hat, to the trace of the
potential energy tensor

2T þW ¼ 0; (29)

with the definition

W � �
Z

d3x�mðxÞx � r�: (30)

Note that W depends explicitly on forces only and some
care must be taken in relating it to the potential or binding
energy of the perturbation for contributions from the brane-
bending mode ’ (see Appendix A 3). We show there that
W can be broken up as a sum of three contributions to the
dynamics,

W ¼ � 3

5

GM2

R
� 4�G

5
ð1þ 3weffÞ�effMR2

� 3

5

�GDGPM�M

R
: (31)

We determine the virial radius Rvir of the perturbation as
the radius during collapse (after turnaround) at which
Eq. (29) is satisfied. In the literature, conservation of total
energy is often used to set this condition. One can easily
show that if energy conservation holds strictly, our deter-
mination of Rvir agrees with the usual definition. However,
in the presence of an evolving �eff and�GDGP, energy is no
longer strictly conserved over a Hubble time. Note that this
problem occurs in dark energy models as well but is
usually ignored under the assumption that weff � �1.
However, this procedure is not justified when considering
modifications due to a finite 1þ weff . Differences between
our definition of Rvir and the one relying on energy con-
servation are of the same order as the differences induced
by 1þ weff . We discuss these issues further in
Appendices A 5 and A 6.
Once Rvir is calculated, we have the density of the

perturbation at this radius, �vir ¼ ��ðavirÞ½1þ �ðRvirÞ�,

FIG. 2 (color online). Top panel: The nonlinearity parameter
�. The Vainshtein mechanism operates once �� * 1. Bottom
panel: �� for a top-hat perturbation that collapses at a0 ¼ 1 in
each model.
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where avir is the scale factor at which the perturbation
reaches Rvir during collapse. For collapse at a0 ¼ 1, avir �
0:91–0:93 for the simulated models. One then assumes that
the perturbation maintains this ‘‘virial density’’ while the
background continues to decrease. The final virial density
with respect to the background, �vir at a0 is then given by
referring this density to the background matter density at
a0:

�vir ¼ ½1þ �ðRvirÞ�
�
a0
avir

�
3
: (32)

Table II shows the resulting spherical collapse parameters,
�c and �vir, for the different models and gravitational
modifications: unmodified (GR collapse), valid for GR
with smooth dark energy; the expression Eq. (15) (DGP
collapse); and Eq. (26) (linearized DGP collapse).

IV. HALO MODEL PREDICTIONS

We now briefly describe how we move from spherical
collapse predictions of the linear collapse threshold �c and
the virial overdensity �vir summarized in Table II to pre-
dictions of the halo mass function, bias, and nonlinear
power spectrum. For further details, see [8].

In the Press-Schechter approach, one assumes that all
regions with � > �c in the linearly extrapolated initial
density field collapse to form bound structures (halos).
The fraction of mass within halos at a given mass is then
determined by the variance of the linear density field
smoothed at that scale. Here, we adopt the Sheth-Tormen
(ST) prescription [31] for the halo mass function predic-
tions, which enables a direct use of our spherical collapse
results. Also, we previously found a good match to the ST
mass function and bias in our �CDM simulations [8].

The ST description for the comoving number density of
halos per logarithmic interval in the virial mass Mvir is
given by

nlnMvir
� dn

d lnMvir

¼ ��

Mvir

fð�Þ d�

d lnMvir

; (33)

where the peak threshold � ¼ �c=�ðMvirÞ and

�fð�Þ ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
a�2

s
½1þ ða�2Þ�p� exp½�a�2=2�: (34)

Here, the virial mass is defined as the mass enclosed at the
virial radius Rvir. �ðMÞ is the variance of the linear density
field convolved with a top hat of radius R that encloses
M ¼ 4�R3 ��=3 at the background density

�2ðRÞ ¼
Z d3k

ð2�Þ3 j
~WðkRÞj2PLðkÞ; (35)

where PLðkÞ is the linear power spectrum and ~W is the
Fourier transform of the top-hat window. The normaliza-
tion constant A in Eq. (34) is chosen such that

R
d�fð�Þ ¼

1. We adopt the standard parameter values of p ¼ 0:3 and
a ¼ 0:75 throughout.
The linear bias corresponding to the ST mass function,

obtained in the peak-background split, is given by [31]

blinðMvirÞ � bðk ¼ 0;MvirÞ

¼ 1þ a�2 � 1

�c

þ 2p

�c½1þ ða�2Þp� : (36)

By assuming a specific form of halo density profiles, we
can rescale mass definitions from the virial mass Mvir to
M200, the mass definition used in the simulation measure-
ments, as outlined in [32] (again, all overdensities are
referred to the background matter density). We use this
approach to compare the scaling relation predictions to the
simulations in Sec. V. For the halo profiles, we take an
Navarro-Frenk-White form [33],

�NFWðrÞ ¼ �s

r=rsð1þ r=rsÞ2
; (37)

where rs is the scale radius of the halo and the normaliza-
tion �s is given by the virial mass Mvir. We parametrize rs
via the concentration cvir � Rvir=rs given by [34]

cvirðMvir; z ¼ 0Þ ¼ 9

�
Mvir

M�

��0:13
; (38)

whereM� is defined via �ðM�Þ ¼ �c. Since generally Rvir,
R200 � rs, the precise form of the concentration relation
has a negligible impact on the mass rescaling. In the
following, when no specific overdensity is given, we im-
plicitly take M ¼ M200, e.g.

nlnM � dn

d lnM200

¼ nlnMvir

d lnMvir

d lnM200

: (39)

We also consider the nonlinear matter power spectrum
calculated in the halo model approach (see [17] for a
review). Since all matter is assumed to be within bound
halos, the matter power spectrum can be decomposed into
1-halo and 2-halo terms,

PmmðkÞ ¼ I2ðkÞPLðkÞ þ P1hðkÞ; (40)

where

TABLE II. Spherical collapse parameters for the cosmologies
defined in Table I for collapse at a0 ¼ 1.

Collapse type/Model: sDGP nDGP-1 nDGP-2

�c GR 1.662 1.674 1.674

DGP 1.627 1.687 1.688

DGP lin. 1.676 1.678 1.672

�vir GR 399.9 372.3 372.3

DGP 467.1 300.4 322.8

DGP lin. 436.4 311.7 339.1
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P1hðkÞ ¼
Z

d lnMvirnlnMvir

M2
vir

��2
m

jyðk;MvirÞj2;

IðkÞ ¼
Z

d lnMvirnlnMvir

Mvir

��m

yðk;MvirÞblinðMvirÞ:
(41)

Here, yðk;MÞ is the Fourier transform of an Navarro-
Frenk-White density profile truncated at Rvir, and normal-
ized so that yðk;MÞ ! 1 as k ! 0. Note that with the ST
mass function and bias, limk!0IðkÞ ¼ 1.

V. RESULTS

We compare our spherical collapse and halo model
predictions with the results of N-body simulations pre-
sented in [9,26] of the sDGP and nDGPþ DE models
(see Sec. II, Table I). In addition to the full simulations
which solve the nonlinear ’ Eq. (9), simulations using the
linearized ’ equation have been performed through
Eq. (26).

We always compare observables measured in the DGP
simulations with those of GR simulations with the same
initial conditions and expansion history. In this way, cos-
mic variance as well as systematic issues cancel out to a
large extent.

A. Halo mass function

Figure 3 shows the deviation of the halo mass function
from QCDM measured in the sDGP and linearized sDGP

simulations, and the spherical collapse predictions.
Figure 4 shows the corresponding results for the nDGPþ
DE models. The spherical collapse predictions work well
in both cases and, in particular, match the shape of the
deviations and the relative impact of the Vainshtein mecha-
nism. In both cases, they somewhat underestimate the size
of the deviations at a fixed mass, corresponding roughly to
a shift in lgM200 of 	0:3–0:5.
In the nDGP models, force modifications are stronger

(see Fig. 2), leading to larger deviations in the mass func-
tion from the corresponding GR model with the same
expansion history. In particular, the abundance of massive
halos M200 * 1014M
=h is significantly enhanced. This
behavior is due to the exponential sensitivity of the mass
function to � ¼ �c=�ðMÞ at the high-mass end, and is
similar to what was seen in the large-field fðRÞ models in
[8].
Furthermore, the density threshold ��1 for the onset of

the Vainshtein mechanism is higher in the nDGP models
than the sDGP model, so that the mass function is less
affected by the Vainshtein mechanism in nDGP. This is
borne out by both simulations and spherical collapse pre-
dictions: the relative spread in the predictions between the
DGP and linearized DGP case shrinks considerably when
going from large to small rc, i.e. from sDGP to nDGP-2 to
nDGP-1.
Finally, since the full spherical collapse predictions al-

ways slightly underestimate the deviations, they can be
used to place conservative limits on DGP braneworld
scenarios from measurements of the halo mass function
e.g. from massive clusters [35–37]. Alternatively, the pre-

FIG. 3 (color online). Deviation in the halo mass function at
z ¼ 0 of sDGP from a dark energy model with the same
expansion history (QCDM). The points show measurements in
the full and linearized DGP simulations, the band shows the
Sheth-Tormenþ spherical collapse prediction range between
full DGP collapse (blue dashed line) and linearized DGP col-
lapse.

FIG. 4 (color online). Same as Fig. 3, for the two normal
branch DGPþ dark energy models nDGP-1 (top) and nDGP-2
(bottom) relative to �CDM. The linearized DGP simulation
results have been displaced horizontally for clarity.
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dictions can be recalibrated based on simulations by in-
troducing a constant shift in lgM200 	 0:3–0:5.

B. Halo bias

This section presents new results on the clustering of
halos in the simulations of [9,26]. We extract the linear
halo bias blinðMÞ from our simulations as described in [8].
For halos of a given logarithmic mass range in a box of size
Lbox, we first obtain the halo bias bðk;MÞ by dividing the
halo mass cross spectrum PhmðkÞ by the matter power
spectrum for each simulation run.2 In order to remove
trends from the nonlinearity of the bias, we then fit a linear
relation to bðk;MÞ ¼ blinðMÞ þ aðMÞk between the mini-
mum k (the fundamental mode of the box) and 	15kmin,
where bðk;MÞ is the combined measurement from all
boxes. The same fitting procedure is applied to the run-
by-run ratio of bDGPðk;MÞ=bGRðk;MÞ.

We then bootstrap over many realizations of the set of
simulations, performing the fit for every realization. We
use the average of the fit parameter blinðMÞ as estimate of
the linear bias, and its spread as an estimate of the error.
Note that in case of the nDGP simulations, we only have 3
runs per box size, so that the error estimate itself has a large
uncertainty.

We show the linear bias blinðMÞ as a function of halo
mass for the QCDM and�CDM simulations themselves in
Fig. 5. As the halo mass function deviates significantly
from a pure power law, especially at the high-mass end, we
plot the bias measurements at the position of the measured
average lgM200 of the halos. The Sheth-Tormen prediction
of Eq. (36), using the parameters from Table II and rescaled
from Mvir to M200 in each case, matches the simulations
well for masses up to 1014M
=h. At higher masses, it
overpredicts the bias in the simulations, though the devia-
tion is a the level of 1–2�. Note that halos are more biased
at a given mass in QCDM than in �CDM, due to the
reduced growth and smaller power spectrum amplitude in
this model.

This trend continues in the DGP simulations: in sDGP,
gravity is further weakened by the repulsive brane-bending
mode, so that the linear halo bias at fixed mass is increased
by	10% compared to QCDM (Fig. 6). There is a hint that
halos are slightly higher biased in the linearized simula-
tions compared to the full simulations, though both are
consistent given the error bars. The spherical collapse
prediction matches the simulation results over the whole
mass range. The full DGP collapse (blue dashed line)
marks the lower edge of the shaded band, while the line-
arized DGP collapse corresponds to the upper edge, in
accordance with expectations. The spread of the predic-

tions is similar in magnitude to the tentative differences
between linearized and full simulations.

FIG. 5 (color online). Linear bias blin of dark matter halos
measured in the �CDM and QCDM simulations at z ¼ 0 (see
Sec. VB), and the prediction of the Sheth-Tormen prescription.

FIG. 6 (color online). Relative deviation of the linear bias
�blin=blin in the full and linearized sDGP simulations from
that of the QCDM simulations as a function of halo mass at z ¼
0. The linearized simulation points have been displaced hori-
zontally for clarity. The band shows the Sheth-Tormenþ
spherical collapse prediction range between full DGP collapse
(blue dashed line) and linearized DGP collapse.

2Note that the definition of bias adopted will differ from
alternate choices such as ðPhh=PmmÞ1=2 or Phh=Phm in the non-
linear regime where the correlation coefficient between halos
and matter can differ from unity.
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For the nDGP models, the opposite trend in the bias is
seen (Fig. 7): halos are less biased at a given mass. While
the full and linearized simulation results are consistent in
the nDGP models, showing no sign of the Vainshtein
mechanism affecting the linear halo bias, they both follow
the spherical collapse prediction very well. This is in
accordance with the good description of the mass function
results in Sec. VA. Also, given the small spread in the
spherical collapse predictions, we do not expect to see any
differences between full and linearized simulations for the
nDGP models.

C. Nonlinear matter power spectrum

We can now assemble the ingredients of the halo model:
the mass function, bias, and profile of halos, to predict the
nonlinear matter power spectrum following Sec. IV. We
assume that the inner parts of the density profiles of halos
are not affected by DGP, as indicated by simulations [26].
More precisely, one can assume that for a halo of given
mass M200, the scale radius rs [Eq. (37)] is the same in
DGP as in GR. Adopting Eq. (38) for the concentration
cvir ¼ Rvir=rs in GR, we have for the concentration relation
in DGP:

cvir;DGPðMÞ ¼ R�ðMÞj�virðDGPÞ
R�ðMÞj�virðGRÞ

cvirðMvir;GRÞ; (42)

where R�ðMÞ ¼ ð3M=ð4�� ��ÞÞ1=3, andMvir;GR is the virial

mass in GR that corresponds to a virial mass ofM in DGP.
We find that for all DGP models considered here, the
concentration cvir;DGP defined by Eq. (42) is within 3% of

the standard relation cvirðMvir;DGPÞ, which has a negligible

effect on the power spectrum on the scales probed by the
simulations. Hence, we leave the concentration relation
Eq. (38) unchanged in our power spectrum predictions.
Figure 8 shows that the sDGP simulation results are

matched very well: the DGP collapse prediction (blue
dashed line) is close the to full simulation results, while
the linearized DGP collapse is close to the linearized
simulations. The renormalized perturbation theory predic-
tion of [30], which uses a completely different approach to
take into account the nonlinear interactions of the brane-
bending mode, is also quite close to our DGP collapse
calculation.
The match to the power spectrum in the nDGP simula-

tions (Fig. 9) is somewhat worse, showing discrepancies of
	30% for nDGP-1 and 	10% for nDGP-2. In particular,
discrepancies can be seen in the quasilinear to nonlinear
transition, k	 0:1–1h=Mpc for nDGP-1. The simplified 1-
halo/2-halo split in the halo model breaks down on these
scales. We also show the predicted nonlinear power spectra
using halofit [38] in combination with the linear DGP
power spectra at z ¼ 0. Note that for k * 0:01h=Mpc, the
linear DGP power spectrum is identical to that of a�CDM
model with higher linear normalization. While the match
to the simulations is better than our spherical collapse
predictions at k & 0:1h=Mpc, the deviations grow towards
smaller scales so that halofit is a worse fit to the
simulations than the spherical collapse model for k *

FIG. 8 (color online). Deviation in the matter power of the
sDGP model from QCDM at z ¼ 0. The points show measure-
ments in the full and linearized DGP simulations, while the band
shows the halo model prediction based on spherical collapse and
the Sheth-Tormen prescription [between DGP (blue dashed line)
and linearized DGP collapse]. The long-dashed line shows the
renormalized perturbation theory prediction from [30].

FIG. 7 (color online). Same as Fig. 6, for the two normal
branch DGPþ dark energy models nDGP-1 (top) and nDGP-2
(bottom), relative to �CDM.
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1h=Mpc. Clearly, it is not trivial to model the simulation
results for �PðkÞ=PðkÞ to better than 	10%.

While the overall magnitude of the power spectrum
enhancement in nDGP is not matched, the shape of
�PðkÞ=PðkÞ is matched quite well. Furthermore, the effect
of the Vainshtein mechanism on the power spectrum is
predicted accurately, as can be seen by comparing the
spread in the spherical collapse predictions to the differ-
ence between full and linearized simulation results. These
findings indicate that it should be possible to rescale line-
arized DGP simulation results with the relative Vainshtein
suppression calculated from spherical collapse.

VI. CONCLUSIONS

By studying the collapse of a spherical perturbation
under DGP braneworld gravity, we have shown how simu-
lation results on the mass function, halo bias and power
spectrum can be understood semianalytically. In DGP
gravity, force modifications are carried by the scalar
brane-bending mode. The global properties of the response
of the brane-bending mode to matter control how the
Vainshtein mechanism modifies force and energy condi-
tions during collapse. These conditions are important for
the calculation of virial equilibrium (see the Appendix for
detailed discussions of these results).

In particular, the presence of evolving modifications to
the gravitational force either through the brane-bending
mode or through the background expansion violate con-
servation of Newtonian total energy for traditional defini-
tions of the potential energy contribution. This violation
applies to smooth dark energy models with w � �1 as

well. We introduce a new, general technique for defining
the virial radius which does not rely on strict energy
conservation.
Under the halo model, these spherical collapse predic-

tions give rise to predictions for the mass function, halo
bias, and power spectrum. We have shown that these
predictions are in good qualitative agreement with DGP
N-body simulations on both the self-accelerating and nor-
mal branch. In particular, the use of spherical collapse for
the mass function always provides slightly conservative
limits on mass function deviations when compared with the
simulations. Hence, the semianalytic techniques intro-
duced here can be used as a practical tool for extending
simulation results for the purpose of studying parameter
constraints on braneworld models from observations of the
mass function.
While the absolute power spectrum agreement is not

quite as good, these techniques can still be useful in
combination with linearized DGP simulations. Since our
spherical collapse predictions appear to capture accurately
the impact of the Vainshtein mechanism on the power
spectrum, they could provide an effective way of taking
nonlinear interactions into account in results obtained from
linearized DGP simulations. Such simulations are very
easy to implement and an order of magnitude cheaper
computationally than the full DGP simulations. Likewise,
they are more readily extendable to higher resolution and
can be used to cover a wider range in parameter space.
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APPENDIX A: TOP-HAT OVERDENSITY IN DGP

In this Appendix, we present in detail the various aspects
of top-hat perturbations in DGP used in the main text. We
begin by reviewing the techniques introduced in Ref. [6]
for the brane-bending field but pay special attention to the
matching of the various solutions as well as derive a closed
form expression for the global field profile. This global
profile is used to study virial equilibrium (Appendix A 3)
and potential energy (Appendix A 4). We discuss subtleties
due to the relationship between the two and violations of
Newtonian energy conservation in Appendix A 5 and their

FIG. 9 (color online). Same as Fig. 8, for the two normal
branch DGPþ dark energy models nDGP-1 (top) and nDGP-2
(bottom) relative to �CDM. The long-dashed lines show the
predictions of halofit using the linear DGP power spectrum.
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impact on defining the virial overdensity in Appendix A 6.
Finally, we examine the impact of density compensation in
the exterior of the top hat in Appendix A 7 in light of the
lack of a Birkhoff theorem in DGP.

1. Spherical symmetry

We begin by assuming that the density perturbation
��ðrÞ is spherically symmetric but otherwise arbitrary.
Given the induced spherical symmetry in the field solution,
the field Eq. (9) reduces to

1

r2
d

dr
r2

d’

dr
þ r2c

3�

�
4

r

d2’

dr2
d’

dr
þ 2

�
1

r

d’

dr

�
2
�
¼ 8�G

3�
��:

(A1)

Integration of the field Eq. (A1) over r2dr then yields

r2
d’

dr
þ 2

3�
r2cr

�
d’

dr

�
2 ¼ 2

3�
GmðrÞ; (A2)

with the enclosed mass perturbation defined as

mðrÞ � 4�
Z r

0
r02��ðr0Þdr0: (A3)

If ��ðrÞ ¼ 0 for r > R, the enclosed mass fluctuation
mðr > RÞ is the total mass fluctuation �M.

Note that the rirj’ term in Eq. (9) is critical in obtain-

ing this solution, since it causes cancellation of the integral
terms when integrating by parts, leaving only the boundary
terms for the nonlinear piece. The field solution interior to
r has no direct effect on the solution at r. Like Newtonian
dynamics, only the enclosed mass, not the enclosed field,
matters. This property is crucial for maintaining the line-
arity of the field solution at large r in the presence of strong
nonlinearity at small r. More generally, linearity is a con-
sequence of Eq. (9) satisfying a nonlinear Gauss’s law and
does not require spherical symmetry (see e.g. [39]).

Since m ! �M at distances beyond which there are no
density fluctuations, and assuming that ’ð1Þ ¼ 0, we can
immediately see that the far exterior solution must be to
leading order ’ / 1=r. Given an increasingly small non-
linear term, this requires

lim
r!1’ ¼ � 2

3�

G�M

r
: (A4)

For the small r solution, the key simplification is that the
force modification d’=dr is now an analytic function of
the enclosed mass

d’

dr
¼ 3�r�ðrÞ

4r2c
gðr=r�Þ; (A5)

where the Vainshtein radius of the enclosed mass is

r�ðrÞ ¼
�
16GmðrÞr2c

9�2

�
1=3

(A6)

and

gðxÞ ¼ x½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x�3

p
� 1�: (A7)

Note that in general r� is a function of r and reflects the
enclosed mass, and r3�=r3 the average density, not the local
density. The latter would be implied by setting

ðrirj’Þ2 ¼ cðr2’Þ2 (A8)

with c ¼ const in the original field equation. However,
doing so would violate the r ! 1 limit. In particular, the
far field limit in this approximation would reveal the
presence of a Vainshtein screened mass instead of the
true mass perturbation �M. Small scale nonlinearity in
the density field would then no longer average to give the
required linear perturbations on large scales [40]. Such an
approximation or any that relates the field solution to the
local density should not be used in a cosmological context
(cf. [26,29]).

2. Field profile

We now assume a top-hat spherical perturbation of
radius R with a constant density enhancement ��
[Eq. (11)]. As usual, we neglect any compensating under-
density swept out by the prior evolution of the top hat.
Since the force modifications within the top hat only
depend on the enclosed mass mðrÞ and not the exterior,
the compensation does not impact the dynamics. It can
however influence the field profile r > R and we return to
this point in Appendix A 7. For the pure top hat, mðr �
RÞ ¼ �M and we can solve for the profile ’ðrÞ in closed
form.
First, let us consider the exterior solution at r > R. In the

exterior, m ¼ const and there is a single Vainshtein radius
R� ¼ r�ðRÞ. Defining a new variable x ¼ r=R�, we can
write Eq. (A5) as

d’

dx
¼ AgðxÞ; (A9)

where

A ¼ 3�

4

�
R�
rc

�
2 ¼ 4

3�

G�M

R�
; (A10)

and we can obtain the full exterior field solution as

’ðrÞ ¼ �
Z 1

r=R�

d’

dx
dx

¼ Ax2

2
f2F1½�1=2;�2=3; 1=3;�1=x3� � 1g: (A11)

The solution of course recovers Eq. (A4) in the limit of
x � 1,

lim
x�1

’ ¼ � A

2x
¼ � 2

3�

G�M

r
: (A12)

Note that the constant A is �2’�, where ’� is the line-
arized field profile evaluated at the Vainshtein radius.
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In the opposite limit x � 1,

lim
x�1

’ ¼ �AðC0 � 2x1=2Þ: (A13)

The constant piece,

C0 � A�1
Z 1

0
dx

d’

dx
¼ �½1=3��½1=6�

4
ffiffiffiffi
�

p � 2:103; (A14)

therefore dominates, and

lim
x�1

’ � � 4C0

3�

G�M

R�
¼ const: (A15)

However, field gradients are determined solely by the x1=2

term. Since particle dynamics depend on forces and hence
field gradients, the existence of a constant term in addition

to the x1=2 term in the field profile makes an important
difference when comparing energy conditions like conser-
vation laws and dynamical considerations like virial equi-
librium, as we shall see. This distinction is often neglected
in the literature (e.g. [28,29]). Figure 10 shows j’ð�M;RÞj
in units of the linearized (x � 1) value as a function of
R=R�. Note the strong suppression of the surface potential
and its saturation for R � R�.

The field interior to the top hat can be similarly solved.
Since r�ðrÞ / r for a constant density profile, Eq. (A5)
implies d’=dr / r and hence

’ðrÞ � ’ð0Þ ¼ Br2: (A16)

We see from substitution into Eq. (A1) that

B ¼ A

2RR�
gðxRÞ (A17)

solves the field equation. Here, xR ¼ xðRÞ ¼ R=R�. Note
that d’=dr is automatically matched at r ¼ R to the ex-
terior solution Eq. (A9). The remaining condition is that
the interior field solution at r ¼ R,

’ðRÞ ¼ A

2
xRgðxRÞ þ ’ð0Þ (A18)

matches the exterior solution from Eq. (A11). Figure 11
shows the resulting ’ profile for different values of xR, in
comparison with the Newtonian potential �N . Again, it is
interesting to examine the xR � 1 and xR � 1 limits of
Eq. (A18). In the former case, we regain the linearized
(Newtonian) expectation that the central value is 3=2 of the
surface value

lim
xR�1

’ð0Þ ¼ �G�M

�R
: (A19)

In the opposite, ‘‘Vainshtein’’ limit, the central field like
the surface field is independent of R to leading order

lim
xR�1

’ð0Þ � ’ðRÞ � � 4C0

3�

G�M

R�
: (A20)

The central field value, which determines the potential
energy associated with the fluctuation is therefore sup-
pressed by ð4C0=3ÞR=R� from the linearized expectation.

FIG. 10. Surface field profile j’ð�M;RÞj [solid curve, see Eq.
(A18)] in units of ð2=3�ÞG�M=R�, the linearized value at R�, as
function of xR ¼ R=R�. Parameters are for the sDGP model
(a ¼ 1). The dotted line shows the linearized solution, x�1

R in
these units. In the Vainshtein limit xR � 1, ’ð�M;RÞ ap-
proaches a constant. ’ð�M;RÞ also determines the binding
energy U’ (Appendix A 4).

FIG. 11 (color online). Field profile ’ðrÞ for a top-hat mass of
radius R in units of the Newtonian surface potential G�M=R, for
two values of the Vainshtein radius R�=R ¼ 10, 100R. ’ was
scaled by 3�=2, so that the linearized field solution agrees with
the Newtonian potential �N shown as the long-dashed line.
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Moreover, the change in the field interior or near the
object, important for forces, is further suppressed by

ðR=R�Þ1=2. We discuss the consequences of these features
of the field profile for virial equilibrium and the potential
energy in the following section.

The force suppression can be recast in terms of an
effective Newton constant in the Poisson equation for the
’ field. Note that in the interior solution, the two pieces of
the nonlinear term in Eq. (9) combine to form

ðr2’Þ2 � ðrirj’Þ2 ¼ 2
3ðr2’Þ2: (A21)

Since the field equation is then algebraic in r2’, one can
solve for r2’ to obtain

r2’ ¼ 8��GDGPðR=R�Þ��; (A22)

�GDGPðxÞ ¼ 2

3�
gðxÞx2G ¼ 2

3�
½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x�3

p
� 1�x3G:

(A23)

Hence, in combination with the Newtonian piece, the in-
terior solution can be phrased as possessing an effective
GDGP ¼ Gþ �GDGP modification to gravity. Furthermore
x�3 / � and so GDGP is a function of the local density
inside the top hat. This relation is specific to the interior of
a top hat and is not simply a spherically symmetric ap-
proximation as the exterior solution shows. More gener-
ally, we can see by taking the derivative of Eq. (A5) that

r2’ ¼ 8��GDGPðr=r�Þ��ðrÞ þ 2GmðrÞ
r2

d

dr
½x2gðxÞ�:

(A24)

Note that �GDGP, mðrÞ and r�ðrÞ are not local functions of
the density field but involve the full interior profile. We
shall return to this point in Appendix A 7.

3. Virial equilibrium

The virial theorem arises from integrating over space the
first moment of the Boltzmann equation, i.e. from the
equation of momentum conservation (see e.g. [41],
Sec. 4.3). Despite its usual association with potential en-
ergy, the virial theorem is inherently a force balance equa-
tion and is the collisionless analogue of hydrostatic
equilibrium. Thus the virial condition is immune to ambi-
guities in the definition of potential energy that we shall
discuss in Appendix A 4.

The virial theorem reads

W � �
Z

d3x�mðxÞx � r� ¼ �2T; (A25)

whereW receives contribution from the Newtonian gravity
of the overdensity, the effective background term, and the
brane-bending mode ’. For a spherically symmetric top
hat each contribution to � yields

Wi ¼ �3M
Z R

0

r2dr

R3
r
d�i

dr
; (A26)

where �i stands for either �N , �eff , or �’ � ’=2. Thus,

any constant offsets in �i do not contribute to W. In
particular, the constant term in ’ in the Vainshtein limit
of Eq. (A20) and its implied potential energy does not enter
into the virial condition.
In the case of the Newtonian contribution,WN defined in

this way is given by

WN ¼ � 3

5

GM�M

R
: (A27)

For the effective contribution of the background �eff / r2

and

Weff ¼ � 4�G

5
½ð1þ 3weffÞ�eff þ ���MR2: (A28)

Note that in our convention, we have included the �� term in
Weff rather than WN . Adding the two contributions yields
the familiar result [21]:

WN þWeff ¼ � 3

5

GM2

R
� 4�G

5
ð1þ 3weffÞ�effMR2:

(A29)

Since the trace of the potential energy tensor is defined via
forces, the ’ contribution can be described in terms of
�GDGP. First, let us examine the exterior region. Using
Eq. (A9), we obtain

d’

dr
¼ 4

3�

G�M

r2
x2gðxÞ; (A30)

which using Eq. (15) becomes

d’

dr
¼ �GDGPðr=R�Þ�M

r2
: (A31)

In the linear regime r�R�, �GDGP then reduces to
ð3�Þ�1G. Note that in the cosmological context,
�GDGP also has a slow time dependence through �ðaÞ
[see Eq. (10)].
Using that in the interior d’=dr / r, we have

W’ ¼ � 3M

2

Z R

0

r2dr

R3
r
d’

dr
¼ � 3M

10

d’

d lnr

��������r¼R
: (A32)

Given that d’=dr at r ¼ R is determined by the exterior
solution, we obtain

W’ ¼ � 3

5

�GDGPM�M

R
; (A33)

where �GDGP ¼ GDGP �G is the effective gravitational
constant for the force modification [Eq. (15)]. Adding all
three contributions, we obtain Eq. (31).
Specifically in the collapse calculation, we evaluate the

virial condition Eq. (A25) in terms of the kinetic and
potential energies per unit mass, written in terms of our
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collapse variable yðlnaÞ. Defining
E0 ¼ 3

10MðH0RiÞ2; (A34)

where Ri is the initial radius of the perturbation, we obtain

T

E0

¼ H2

H2
0

ðy0 þ a=aiÞ2;
WN

E0

¼ ��ma
�3ð�þ 1Þðyþ a=aiÞ2;

W’

E0

¼ ��ma
�3 �GDGPðR=R�Þ

G
�ðyþ a=aiÞ2;

Weff

E0

¼ �½1þ 3weffðaÞ��effðaÞ
�cr;0

ðyþ a=aiÞ2:

(A35)

We then define the virial radius as the radius during the
collapse at which the virial condition is satisfied. We shall
examine approximate techniques for finding this scale
through energy conservation in Appendix A 6. As we shall
see, with conventional definitions of potential energy, the
total energy is not strictly conserved, especially during the
initial stages of collapse.

4. Potential energy definition

Let us now consider the potential or binding energy of
the top-hat mass. For the Newtonian contribution, the
potential energy is well defined. By virtue of the Birkhoff
theorem, we can view total mass inside the top hat as a
Newtonian system in a flat background. We shall see that
neither the potential energy contributed by the brane-
bending mode ’ nor the effective forces of the background
expansion are unambiguous to define as both depend on the
exterior cosmological context. We therefore follow the
convention in the literature in defining them by analogy
to the Newtonian contribution.

The Newtonian calculation of potential energy proceeds
by replacing the exterior of the top hat with a flat back-
ground, the metric analogue to the Newton iron sphere
theorem (see [42], Sec. 4). Removing mass shell by mass
shell from the outside in, we obtain

U ¼
Z R

0
�totðmðrÞ; rÞ4��mr

2dr; (A36)

where �totðm; rÞ denotes the solution for the total gravita-
tional potential for a top hat with radius r and mass
perturbation m ¼ ðr=RÞ3�M evaluated at r. This is not to
be confused with the total potential at a radius r interior to
the whole top hat.

Even for the matter contribution, there arises an ambi-
guity in that the contribution of the background matter
density across the top hat is defined only up to a constant
�0 through�eff of Eq. (19). In other words, the iron sphere
theorem applies directly to forces not potentials and con-
stant offsets do not have any impact on the dynamics.
Therefore,

�tot ¼ �N þ�’ þ�eff þ�0: (A37)

This constant�0 does not simply introduce a trivial shift in
U, since even though it is constant across the top hat, it is
not necessarily constant as we strip away mass shells. In
fact, it is conventional to choose this value to correspond to
the result from Newtonian mechanics

�0 ¼ �2�G ��R2 � � 3

2

G �M

R
; (A38)

such that

�N þ�eff þ�0 ¼ �GM

R
þ 2�G

3
ð1þ 3weffÞ�effR

2:

(A39)

The �GM=R piece then corresponds to the Newtonian
mechanics result for the potential given the total mass
inside the top hat. Using the Birkhoff theorem, this is a
valid interpretation of the cosmological case as well.
Note that the �eff piece cannot be properly considered a

binding energy, since its contribution cannot be considered
without reference to the cosmological background. Even
for quintessence models where �eff represents a real energy
density, this contribution is supposed to be smooth within
its horizon sized Jeans scale regardless of the top-hat
collapse and so excising the top hat and placing the mass
in a flat background does not strictly make sense.
Nevertheless, under this convention the binding energy

from these three components becomes

UN þUeff þU0 ¼ � 3

5

GM2

R
þ 2�G

5
ð1þ 3weffÞMR2:

(A40)

By analogy let us compute the potential energy contribu-
tion from �’,

U’ ¼ 1

2

Z R

0
’ðmðrÞ; rÞ4��mr

2dr: (A41)

Again, ’ðm; rÞ denotes the exterior solution of ’ from
Eq. (A11) for a mass �M ! m and radius R ! r. Note
that by making this assumption, we are implicitly invoking
the Birkhoff theorem where it does not in fact strictly
apply. Specifically, as mass shells are stripped away, we
ignore the impact of the underdensity left behind outside of
the body. As we shall see in Appendix A 7, this under-
density actually changes the interior profile. Nonetheless,
since the ambiguity mainly affects the initial stages of
collapse when �M � M, it is useful to simply define
Eq. (A41) as the binding energy associated with ’ for
energy bookkeeping purposes.
Reexpressing in terms of the dimensionless radius y ¼

r=R (not to be confused with y defined in Sec. III which we
shall not use hereafter), we have m ¼ y3M, so that xr ¼
r=r�ðmÞ ¼ R=R� ¼ xR is invariant, while AðmÞ ¼
y2Að�MÞ. Therefore,
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’ðm; rÞ ¼ y2’ð�M;RÞ; (A42)

where ’ð�M;RÞ is the solution for the full mass evaluated
at r ¼ R [Eq. (A11) at x ¼ xR]. This is the same scaling
that one obtains for a Newtonian potential, �ð�M;RÞ ¼
G�M=R and likewise the potential energy follows the
same scaling

U’ ¼ 3

2
M’ð�M;RÞ

Z 1

0
y4dy ¼ 3

10
M’ð�M;RÞ: (A43)

The important difference for U’ is that ’ð�M;RÞ, the
field profile at R, behaves very differently in the linearized
and Vainshtein limits

U’ ¼
�� 1

3�
3
5
GM�M

R ; xR � 1;

� 2C0

5�
GM�M

R�
; xR � 1:

(A44)

Hence, unlike the Newtonian binding energy, jU’j has a
maximum value which is reached asymptotically as xR ¼
R=R� decreases. Thus, while the Newtonian binding en-
ergy can become an arbitrarily large fraction of the rest
mass energy �M, the energy in ’ is limited to a fraction of

G�M=�R� 	 ðG�M=rcÞ2=3 due to the brane-bending
mode interactions regardless of the value of R.

5. Potential energy usage

Defining a Newtonian based potential energy even
though the collapse does not require a Newtonian interpre-
tation is useful for two interrelated reasons. First, it serves
as a bookkeeping device if the total energy is conserved
during the collapse. Second, it can be used to evaluate the
virial condition if it can be simply related to the trace of the
potential energy tensor W. We examine to what extent
these two expectations are satisfied given the field ’ and
the effect of the background expansion.

Let us define the total energy of the perturbation during
collapse as

E ¼ T þU: (A45)

Taking the time derivative of Eq. (A45) and using the
equation of motion of RðtÞ [Eq. (18)] rewritten using the
top-hat profile as

€R ¼ �GDGP�M

R2
� 4�G

3
½ð1þ 3weffÞ�eff þ ���R; (A46)

we obtain

dE

dt
¼ 3

5
M _R €Rþ @U

@R
_Rþ @U

@t
¼ @U

@t
: (A47)

Here, the partial derivative @U=@t receives contributions
from evolving quantities in the total potential energy, the
sum of Eqs. (A40) and (A43). Since M is conserved, there
is no violation of energy conservation for a pure matter
system with �eff ¼ 0 and ’ ¼ 0. This is a consequence of
adding the �0 offset term to reproduce Newtonian me-
chanics in the matter terms including the background.

On the other hand, both the �eff and ’ contributions
have explicit time evolution across a Hubble time. Note
that violation of energy conservation due to evolution of
�eff also applies to dark energy models where weff � �1.
In the ’ term given by Eq. (A43), � evolves with the
expansion, and as long as � is not much greater than 1,
�M also evolves during collapse. More generally, these
effects occur whenever the modification to the background
(due to modified gravity or the presence of dark energy)
does not match that of the perturbations. We return to the
impact of energy nonconservation in Appendix A 6.
Noncon-
servation of the Newtonian total energy defined in
Eq. (A45) does not mean a violation in covariant conser-
vation of energy and momentum.
In order to use the potential energy to assist the evalu-

ation of the virial theorem, we must relate U to the trace of
the potential energy tensor W. It is well known that for a
potential satisfying �ðrÞ / r	 and for which the interior
solution is �intðr < RÞ ¼ �extðmðrÞ; rÞ, Wi ¼ �	Ui.
Hence, for potentials satisfying this condition, the potential
energy determined by the potential itself is of the same
order as the trace of the potential energy tensor defined by
the forces. This holds for the Newtonian contribution,
where we have UN ¼ WN , and the effective background
contribution, which satisfies Ueff ¼ �Weff=2. For the
brane-bending mode, the potential is no longer a pure
power law and the distinction between U and W leads to
interesting consequences in the Vainshtein limit.
Note that in this xR � 1 limit, the potential energyU’ is

dominated by the constant term in Eq. (A13), while the

contribution from the x1=2 part of the profile which deter-
mines forces is much smaller. Correspondingly, the as-
sumption that the trace of the potential energy tensor W
is of order the potential energy U is not valid for the ’
contribution, as the change in the potential across the body
is much smaller than the potential depth itself. The rela-
tionship betweenW’ and U’ follows from Eqs. (A32) and

(A43):

W’ ¼ � d ln’

d lnr

��������r¼R
U’ ¼ �d lnU’

d lnR
U’: (A48)

In the R � R� limit, ’ / r�1 and W’ ¼ U’ as usual, but

in the R � R� limit, ’ � const and the trace of the poten-
tial tensor is highly suppressed compared to the potential
energy. Figure 12 shows U’ and W’ as a function of the

overdensity � ¼ ��= �� of the perturbation. Note that if we
were to interpret the Vainshtein effect as simply a modifi-
cation of G, we would infer the wrong energy condition at
virialization. We discuss this issue in the next section.

6. Misestimating virial overdensity

Most commonly, the virial condition Eq. (29) is eval-
uated using energy conservation. At virialization,
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TðRvirÞ ¼ �1
2WðRvirÞ; (A49)

and the total energy E ¼ TðRvirÞ þUðRvirÞ ¼ UðRvirÞ �
WðRvirÞ=2. Since at turnaround (R ¼ Rta) the kinetic en-
ergy vanishes, we have E ¼ UðRtaÞ. Assuming energy
conservation, we obtain

UðRtaÞ �UðRvirÞ þ 1

2
WðRvirÞ ¼ 0: (A50)

By further assuming a relationship between the potential
energy U and the trace of the potential tensor W, we can
solve for Rvir=Rta. There are therefore two ways by which
this association can go wrong: if E is not conserved and if
an incorrect relation between U and W is employed.

Let us begin by examining the first issue. Energy is not
strictly conserved in any model where either weff � �1
(including quintessence), modifications to gravity are time
variable, or force modifications are only generated by the
perturbed mass �M.

Evaluating Eq. (A45) during collapse, we found that in
the effective dark energy model QCDM [which has the
same HðzÞ as sDGP], energy conservation is violated by
	3% from turnaround to collapse. While the violation of
energy conservation in dark energy models thus seems to
be minor, it does influence the virial overdensity due to the
sensitivity of �vir to Rvir and avir. Figure 13 shows �vir as
function of a constant dark energy equation of state weff

and �eff ¼ 0:741, determined by evaluating the virial

condition during collapse (our approach) and using energy
conservation (e.g., [21]). While both approaches agree for
weff ¼ �1 as expected, there are clear differences as soon
as weff � �1. Note that these differences are of the same
order as the difference �virðweffÞ � �virðweff ¼ �1Þ.
Our approach does not rely on exact energy conserva-

tion, and one might thus expect the �vir obtained in this
way would lead to a better match to observables. Since
quantities such as the mass function are typically simply fit
to simulations with a given definition of overdensity, this is
in part an issue of semantics. However, use of a more
physically motivated scaling might lead to a more univer-
sal form for the mass function or one that scales more
simply with parameters of the theory. It would however be
necessary to compare with N-body simulations of weff �
�1 dark energy models, and that is beyond the scope of
this work. Here, we simply note that the dependence on
weff of �vir determined using our approach is smaller than
that of the usual definition and so it would predict a more
universal scaling with a fixed overdensity than the standard
approach.
The deviations from E ¼ const are much larger in the

DGP modified force case, where evolving forces and �M
lead to stronger evolution of E. Here, differences in the
total energy between turnaround and collapse are 10–15%.

FIG. 13 (color online). Misestimation of the virial overdensity
�vir in quintessence dark energy models. �vir as defined in
Sec. III C for collapse at a0 ¼ 1, as a function of the dark energy
equation of state parameter weff ¼ const and �eff ¼ 0:741 i.e.
for standard gravitational forces (top panel). The solid line shows
�vir determined by evaluating the virial condition during col-
lapse, the approach adopted here, while the dashed line shows
the usual calculation using standard energy conservation as
described in Appendix A 6. Both calculations agree for w ¼
�1, i.e. �eff ¼ const. The lower panel shows the relative devia-
tion between the two, ð�std

vir ��virÞ=�vir.

FIG. 12 (color online). Scaled brane-bending mode binding
energy 3�
U’ in units of the Newtonian binding energyUN ¼
�3GM�M=5R (black solid) as a function of the overdensity �
for a spherical top-hat mass at z ¼ 0 in the sDGP cosmology.
The blue dashed line shows the trace of the potential energy
tensor ð3�Þ 
W’ used in the virial theorem, Eq. (A32), again

with respect to the Newtonian value WN ¼ UN .
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Thus, the choice of procedure for determining �vir be-
comes even more important. Again, we found that our
approach (greatly) reduces the dependence of �vir on the
evolution of the modified forces.

Finally, we consider the effect of assuming an incorrect
relation between U and W in Eq. (A50). For example, it is
tempting to just set U’ ¼ W’ ¼ �GDGP=G
WN, i.e.,

ignoring the R-independent term in U’. However, since

�GDGP ! 0 in the late stages of collapse (� ! 1), U’

would erroneously be set to 0 in this approximation. For �
of order unity, this leads to apparent violations of energy
conservation at the level of 30%. When using energy
conservation in the presence of the ’ field, it is thus crucial
to take into account the differences between U’ and W’.

7. Compensated top-hat profile

Finally we study one example of a density profile be-
yond the pure top hat, the compensated top-hat profile. In
the cosmological context, a collapsing top-hat perturbation
sweeps out ‘‘empty space’’ and in fact has the following
density profile:

�ðrÞ � �� ¼
8<
:

���; r � R;
� ��; R < r � Re;
0; r > Re;

(A51)

where Re ¼ Ria=ai is the physical radius today corre-
sponding to the radius of the perturbation at an early
time ai when � � 1. We continue to call the total mass
and mass perturbation enclosed at R asM and �M � mðRÞ,
respectively.

In terms of the scaled radial coordinate y � r=R, the full
description for the enclosed mass perturbation becomes

mðrÞ ¼
8><
>:
�My3; y � 1;
M½1� ðy=yeÞ3�; 1< y � ye;
0; y > ye:

(A52)

Importantly, forces at a given radius only depend on the
enclosed mass mðrÞ through Eq. (A5). Given that for r <
R, the enclosed mass of the compensated and uncompen-
sated top hat are the same, compensation has no impact on
the interior dynamics of collapse. Likewise, from the defi-
nition of the potential energy tensor Eq. (A26), we see then
that W’ is unchanged from that of the pure top-hat profile,

and hence the virial condition is unmodified.
Naively, one might assume that as long as � � 1, the

compensation has little effect on the binding energy or
gravitational potential � in the interior as well, but we
shall see that this is not necessarily so for the brane-
bending contribution due to the Vainshtein suppression.

In the exterior (y > 1) forces from ’ are modified by the
compensation as

d’

dy
¼ R

d’

dr

¼
�
2

3�

G�M

R

�
2y

y3�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
y�
y

�
3 y3e � y3

y3e � 1
þ 1

s
� 1

�
:

(A53)

In the limit ye � y � 1, the forces are the same as in the
uncompensated profile (see Fig. 14). Since y3e ¼ 1þ �,
forces are unchanged near the body, y	 1, as long as � �
1. Even for � < 1, this modification does not introduce any
physical effect on the collapse since there is no mass in the
exterior region 1< y< ye that could be moved by the
modified forces. Hence an initial top-hat profile will re-
main a top hat during collapse.
Now let us look at the effect of compensation near the

Vainshtein scale of the mass, y� � R�=R. Note that

y3�
y3e

¼ �
�

1þ �
; (A54)

where ��1 is the density threshold beyond which the
Vainshtein mechanism operates as defined in Eq. (27).
Unless this density threshold also satisfies ��1 � 1, com-
pensation effects will change how the profile saturates,
since y� will be comparable to ye. Correspondingly in
Eq. (A53), both � � 1 and � � 1 are necessary for
d’=dy to recover the uncompensated result at the
Vainshtein scale y�. Given that the top-hat ’ profile within
R� is controlled by its value at R�, we expect the ’ profile
itself to be modified near the body by the density compen-
sation unless � � 1.
More specifically, let us consider the linearized (y� � y)

and Vainshtein (y� � y) limits as before. First note that
even the Newtonian force d�N=dr for the compensated
top hat at y > 1 is modified as

R
d�N

dr
¼ GmðrÞ

R
y�2 ¼ G�M

R

y3e � y3

y3e � 1
y�2: (A55)

In the linearized limit, Eq. (A53) reduces to

lim
y�y�

d’

dr
¼ 2

3�

d�N

dr
(A56)

as expected. In the Vainshtein limit of y� � yð>1Þ, and in
which case y � ye as well, the force contributions take the
form

lim
y�y�

d’

dy
¼

�
2

3�

G�M

R

�
2ffiffiffi
y

p y�3=2
�

�
y3e � y3

y3e � 1

�
1=2

: (A57)

We thus recover the leading r�1=2 behavior of the force in
this limit. Figure 14 shows d’=dy as function of y for
different values of y� ¼ R�=R. Note that unlike the
Newtonian case, the force given by d’=dy differs from
that of an equivalent top hat with radius r and enclosed
mass fluctuation mðrÞ for any r > R. This behavior cannot
be described by a simple GDGPð�Þ parametrization.
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Next, as with the pure top hat, we can solve for the whole
field profile given the boundary condition ’ðReÞ ¼ 0 by
integrating

’ðr > RÞ ¼ �
Z ye

r=R

d’

dy
dy: (A58)

We then obtain

’ðyÞ ¼ �
�
2

3�

G�M

R

�
y2e
y3�

�
y2

y2e
� 1þ Fð1; �Þ � F

�
y

ye
; �

��
;

where

Fðx; �Þ � 4
ffiffiffiffiffiffi
�x

p
2F1½�1=2; 1=6; 7=6; x3ð1� ��1Þ�:

(A59)

Note that this is a slightly different hypergeometric func-
tion than that in the pure top-hat field solution. Figure 15
shows ’ðyÞ vs y for a fixed overdensity � ¼ 106 for two
different values of y� (or, equivalently, �). Again, we obtain
the expected scaling in the limiting cases. For the linear
limit y � y�, we have

lim
y�y�

’ðyÞ ¼
�
2

3�

G�M

R

��
� y2

2�
� �þ 1

y�
þ 3

2

ð�þ 1Þ2=3
�

�

¼ 2

3�
�N; (A60)

proportional to the Newtonian potential for a compensated

top hat with the same boundary condition,�NðReÞ ¼ 0. As
expected, for � � 1 the profile matches the uncompen-
sated case until y approaches ye.

In the Vainshtein limit, y� � �1=3ye � 1 and the profile
becomes

lim
y�y�

’ðyÞ ¼ �
�
4

3�

G�M

R�

�
½C� � 2

ffiffiffiffiffiffiffiffiffiffi
y=y�

q
�; (A61)

where

C� ¼ Fð1; �Þ � 1

2�2=3
: (A62)

In the limit � ! 0, C� ¼ C0, and the profile returns to the
uncompensated form of Eq. (A20). In Fig. 16 we show
C�=C0 the reduction in the surface potential ’ðRÞ due to
the compensation in the Vainshtein limit.
One can also define an alternate definition of the binding

energy of the perturbation �M. Suppose that we again
define the binding energy U’ as in Eq. (A41) by removing

shell by shell of the mass to Re. However, in this case we
properly account for the impact of the exterior. As each
shell is removed to Re, it fills in the mass deficit so that Re

decreases in such a way as to keep ye ¼ Re=R constant.
Thus, the only part of Eq. (A59) which scales nontri-

vially is the prefactor �M=R / R2 as in the case of the pure
top hat. Equation (A43) strictly holds for the compensated

FIG. 15 (color online). The exterior ’ profile in units of
2=ð3�ÞG�M=R as function of the scaled radius y for a compen-
sated top-hat profile (solid). ye ¼ 100 and y� ¼ 67 as in Fig. 14.
The field goes to 0 at y ¼ ye (dotted vertical line). The dashed
line shows the profile for an uncompensated top hat with the
same mass and radius. Note that the ’ field for the two profiles
differs at all radii, reflecting the fact that ’ðrÞ is not simply
determined by the enclosed mass at r.

FIG. 14 (color online). Field gradient d’=dr for a compen-
sated top-hat profile (solid) in units of 2=ð3�ÞG�M=R2 as a
function of y ¼ r=R. ye ¼ Re=R is set to 100 (corresponding to
� ¼ 106), and y� ¼ R�=R ¼ 67, corresponding to � ¼ 0:3 valid
for the sDGP model. The dashed line shows d’=dr for the same
top-hat mass but with uncompensated profile. Near R, force
modifications from ’ are not affected by compensation.
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top hat

Ui ¼ 3
10M�ið�M;RÞ (A63)

for the Newtonian and ’ contributions. In particular, in the
Vainshtein regime, the modification in U’ from the pure

top hat is given by the constant piece in the profile which
scales with � as in Fig. 16.

In fact, this derivation unlike that for the pure top hat is
fully self-consistent in that the form of the profile, includ-
ing the background contribution, is self-similar as the
shells are removed. Furthermore, the end result is a com-
pensated top hat of R ! 0, i.e. an unperturbed universe
with no source to ’. In this view, the binding energy
associated with �M is the energy required to eliminate
the mass perturbation rather than the mass.

Unfortunately, this definition still does not fully resolve
the ambiguities associated with the potential energy defi-
nition. We still need to account for the potential energy due
to the background density. In particular, in this definition
the Newtonian binding energy also only accounts for the
perturbation and hence using it in the definition of total
energy would not obey strict energy conservation during
the collapse, especially for � < 1. We have seen that in the
literature, the definition of potential energy is mainly used
in conjunction with energy conservation to simplify the
calculation of the virial radius. In this context, the original
definition of binding energy as that of a pure top hat with
no contribution from the exterior is more useful. In this
case, it is important to keep in mind however that modified

forces as well as evolving dark energy density generally
imply a violation of energy conservation (Appendix A 5).

[1] A. G. Riess et al., Astrophys. J. 659, 98 (2007).
[2] M. Kowalski et al., arXiv:0804.4142.
[3] J. Dunkley et al., Astrophys. J. Suppl. Ser. 180, 306

(2009).
[4] T. Giannantonio et al., Phys. Rev. D 74, 063520 (2006).
[5] D. Pietrobon, A. Balbi, and D. Marinucci, Phys. Rev. D

74, 043524 (2006).
[6] A. Lue, R. Scoccimarro, and G.D. Starkman, Phys. Rev. D

69, 124015 (2004).
[7] H. Oyaizu, M. Lima, and W. Hu, Phys. Rev. D 78, 123524

(2008).
[8] F. Schmidt, M. Lima, H. Oyaizu, and W. Hu, Phys. Rev. D

79, 083518 (2009).
[9] F. Schmidt, Phys. Rev. D 80, 043001 (2009).
[10] G. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B 485,

208 (2000).
[11] C. Deffayet, Phys. Lett. B 502, 199 (2001).
[12] A. Nicolis and R. Rattazzi, J. High Energy Phys. 6 (2004)

59.
[13] K. Koyama and R. Maartens, J. Cosmol. Astropart. Phys. 1

(2006) 16.
[14] K. C. Chan and R. Scoccimarro, Phys. Rev. D 80, 104005

(2009).

[15] G. Dvali, S. Hofmann, and J. Khoury, Phys. Rev. D 76,
084006 (2007).

[16] A. Nicolis, R. Rattazzi, and E. Trincherini, Phys. Rev. D
79, 064036 (2009).

[17] A. Cooray and R. Sheth, Phys. Rep. 372, 1 (2002).
[18] P. J. E. Peebles, The Large-Scale Structure of the Universe

(Princeton University Press, Princeton, NJ, 1980), p. 435
(Research supported by the National Science Foundation).

[19] O. Lahav, P. B. Lilje, J. R. Primack, and M. J. Rees, Mon.
Not. R. Astron. Soc. 251, 128 (1991).

[20] L. Wang and P. J. Steinhardt, Astrophys. J. 508, 483
(1998).

[21] C. Horellou and J. Berge, Mon. Not. R. Astron. Soc. 360,
1393 (2005).

[22] S. Basilakos, J. C. B. Sanchez and L. Perivolaropoulos,
Phys. Rev. D 80, 043530 (2009).

[23] W. Fang et al., Phys. Rev. D 78, 103509 (2008).
[24] M.A. Luty, M. Porrati, and R. Rattazzi, J. High Energy

Phys. 09 (2003) 029.
[25] K. Koyama, Classical Quantum Gravity 24, R231 (2007).
[26] F. Schmidt, Phys. Rev. D 80, 123003 (2009).
[27] L. Lombriser, W. Hu, W. Fang, and U. Seljak, Phys. Rev.

D 80, 063536 (2009).

FIG. 16. Reduction in the surface potential due to compensa-
tion in the Vainshtein limit, C�=C0, as a function of � ¼ y3�=�. In
the limit � � 1, y� � ye and the compensation has little effect
on the ’ profile. This quantity also controls the reduction in
binding energy.

SPHERICAL COLLAPSE AND THE HALO MODEL IN . . . PHYSICAL REVIEW D 81, 063005 (2010)

063005-19



[28] K. Koyama and F. P. Silva, Phys. Rev. D 75, 084040
(2007).

[29] J. Khoury and M. Wyman, Phys. Rev. D 80, 064023
(2009).

[30] R. Scoccimarro, Phys. Rev. D 80, 104006 (2009).
[31] R. Sheth and B. Tormen, Mon. Not. R. Astron. Soc. 308,

119 (1999).
[32] W. Hu and A.V. Kravtsov, Astrophys. J. 584, 702 (2003).
[33] J. F. Navarro, C. S. Frenk, and S.D.M. White, Astrophys.

J. 490, 493 (1997).
[34] J. S. Bullock et al., Mon. Not. R. Astron. Soc. 321, 559

(2001).
[35] A. Vikhlinin et al., Astrophys. J. 692, 1060 (2009).

[36] E. Rozo et al., Astrophys. J. 708, 645 (2010).
[37] A. Mantz, S.W. Allen, D. Rapetti, and H. Ebeling,

arXiv:0909.3098.
[38] R. E. Smith et al., Mon. Not. R. Astron. Soc. 341, 1311

(2003).
[39] L. Hui, A. Nicolis, and C. Stubbs, Phys. Rev. D 80, 104002

(2009).
[40] W. Hu, Nucl. Phys. B, Proc. Suppl. 194, 230 (2009).
[41] J. Binney and S. Tremaine, Galactic Dynamics (Princeton

University Press, Princeton, NJ, 1987).
[42] P. Peebles, Principles of Physical Cosmology (Princeton

University Press, Princeton, NJ, 1993).

FABIAN SCHMIDT, WAYNE HU, AND MARCOS LIMA PHYSICAL REVIEW D 81, 063005 (2010)

063005-20


	University of Pennsylvania
	ScholarlyCommons
	3-15-2010

	Spherical Collapse and the Halo Model in Braneworld Gravity
	Fabian Schmidt
	Wayne Hu
	Marcos Lima
	Recommended Citation

	Spherical Collapse and the Halo Model in Braneworld Gravity
	Abstract
	Disciplines
	Comments


	untitled

