3,847 research outputs found
A Model for Structure Formation Seeded by Gravitationally Produced Matter
This model assumes the baryons, radiation, three families of massless
neutrinos, and cold dark matter were mutually thermalized before the baryon
number was fixed, primeval curvature fluctuations were subdominant, and
homogeneity was broken by scale-invariant fluctuations in a new dark matter
component that behaves like a relativistic ideal fluid. The fluid behavior
could follow if this new component were a single scalar field that interacts
only with gravity and with itself by a pure quartic potential. The initial
energy distribution could follow if this component were gravitationally
produced by inflation. The power spectra of the present distributions of mass
and radiation in this model are not inconsistent with the measurements but are
sufficiently different from the adiabatic cold dark matter model to allow a
sharp test in the near future.Comment: 4 pages, 2 figures submitted to ApJ Letter
Spherical Collapse and the Halo Model in Braneworld Gravity
We present a detailed study of the collapse of a spherical perturbation in
DGP braneworld gravity for the purpose of modeling simulation results for the
halo mass function, bias and matter power spectrum. The presence of evolving
modifications to the gravitational force in form of the scalar brane-bending
mode lead to qualitative differences to the collapse in ordinary gravity. In
particular, differences in the energetics of the collapse necessitate a new,
generalized method for defining the virial radius which does not rely on strict
energy conservation. These differences and techniques apply to smooth dark
energy models with w unequal -1 as well. We also discuss the impact of the
exterior of the perturbation on collapse quantities due to the lack of a
Birkhoff theorem in DGP. The resulting predictions for the mass function, halo
bias and power spectrum are in good overall agreement with DGP N-body
simulations on both the self-accelerating and normal branch. In particular, the
impact of the Vainshtein mechanism as measured in the full simulations is
matched well. The model and techniques introduced here can serve as practical
tools for placing consistent constraints on braneworld models using
observations of large scale structure.Comment: 20 pages, 16 figures; v2: minor addition to appendix; matches
published version; v3: typos in Eqs. (20), (23) correcte
Dynamics of a Dark Matter Field with a Quartic Self-Interaction Potential
It may prove useful in cosmology to understand the behavior of the energy
distribution in a scalar field that interacts only with gravity and with itself
by a pure quartic potential, because if such a field existed it would be
gravitationally produced, as a squeezed state, during inflation. It is known
that the mean energy density in such a field after inflation varies with the
expansion of the universe in the same way as radiation. I show that if the
field initially is close to homogeneous, with small energy density contrast
delta rho /rho and coherence length L, the energy density fluctuations behave
like acoustic oscillations in an ideal relativistic fluid for a time on the
order of L/|delta rho /rho|. This ends with the appearance of features that
resemble shock waves, but interact in a close to elastic way that reversibly
disturbs the energy distribution.Comment: 7 pages, 5 figures, submitted to Phys Rev
Noninteracting dark matter
Since an acceptable dark matter candidate may interact only weakly with
ordinary matter and radiation, it is of interest to consider the limiting case
where the dark matter interacts only with gravity and itself, the matter
originating by the gravitational particle production at the end of inflation.
We use the bounds on the present dark mass density and the measured large-scale
fluctuations in the thermal cosmic background radiation to constrain the two
parameters in a self-interaction potential that is a sum of quadratic and
quartic terms in a single scalar dark matter field that is minimally coupled to
gravity. In quintessential inflation, where the temperature at the end of
inflation is relatively low, the field starts acting like cold dark matter
relatively late, shortly before the epoch of equal mass densities in matter and
radiation. This could have observable consequences for galaxy formation. We
respond to recent criticisms of the quintessential inflation scenario, since
these issues also apply to elements of the noninteracting dark matter picture.Comment: 37 pages, 3 figure
Dark energy in motion
Recent large-scale peculiar velocity surveys suggest that large matter
volumes could be moving with appreciable velocity with respect to the CMB rest
frame. If confirmed, such results could conflict with the Cosmological
Principle according to which the matter and CMB rest frames should converge on
very large scales. In this work we explore the possibility that such large
scale bulk flows are due, not to the motion of matter with respect to the CMB,
but to the flow of dark energy with respect to matter. Indeed, when dark energy
is moving, the usual definition of the CMB rest frame as that in which the CMB
dipole vanishes is not appropriate. We find instead that the dipole vanishes
for observers at rest with respect to the cosmic center of mass, i.e. in motion
with respect to the background radiation.Comment: 9 pages, 1 figure. Essay selected for "Honorable Mention" in the 2006
Awards for Essays on Gravitation (Gravity Research Foundation
Probing fundamental physics with pulsars
Pulsars provide a wealth of information about General Relativity, the
equation of state of superdense matter, relativistic particle acceleration in
high magnetic fields, the Galaxy's interstellar medium and magnetic field,
stellar and binary evolution, celestial mechanics, planetary physics and even
cosmology. The wide variety of physical applications currently being
investigated through studies of radio pulsars rely on: (i) finding interesting
objects to study via large-scale and targeted surveys; (ii) high-precision
timing measurements which exploit their remarkable clock-like stability. We
review current surveys and the principles of pulsar timing and highlight
progress made in the rotating radio transients, intermittent pulsars, tests of
relativity, understanding pulsar evolution, measuring neutron star masses and
the pulsar timing array.Comment: 6 pages, 1 figure, to appear in the proceedings of IAU XXVII GA - JD3
- Neutron Stars: Timing in Extreme Environments XXVII IAU General Assembly,
Rio de Janeiro, Brazil, 3-14 August 200
Master planning communities with wildlife in mind
Master-planned communities can be designed for the protection of wildlife while providing an aesthetically pleasing, eco-friendly, and affordable community for people. This study was conceived from a background of academic studies in plant biology, forestry, and landscape architecture, and a desire to rescue wildlife habitat from the encroachment of urban sprawl. A variety of books and periodicals were consulted, along with a few web sites. The primary threats to wildlife habitat are habitat fragmentation, pollution, and exotic invasive species of plants, animals, insects, and diseases. Many aspects of planning are addressed, including wildlife corridors, site selection, connecting habitat patches, and stormwater management. With careful planning, new communities can incorporate the principles of sustainable design, building inside nature’s envelope, green infrastructure, new urbanism, and Smart Growth to protect and preserve wildlife habitat
Engaging Undergraduate Students In Spectroscopy Research Via Development And Incorporation Of Advanced Data Analysis Techniques
The rapidity with which large amounts of spectroscopic data can now be collected is presently driving interest in developing techniques to improve the speed with which spectra can be analyzed. While desirable in a research setting to avoid bottlenecks in the lab, these techniques will also be essential to the commercialization of high resolution spectroscopic methods for analysis of complex mixtures. At the same time, many undergraduate students are intrigued by the concept of data analytics and attracted by the growing job market related to this field. We will present our incorporation of analysis techniques appropriate for large data sets into undergraduate spectroscopy research experiences. Through analysis of high sensitivity microwave spectra of complex mixtures of weakly bound complexes, undergraduate students from a wide range of majors gain skill sets that put them ahead of their peers in areas such as problem solving, basic coding, and computer skills (Excel, DOS, Linux, Python, Mathcad). The majority of spectroscopy undergraduate research students at Eastern Illinois University do not go on to chemistry careers, and these additional skills that they learn provide excellent preparation for a wide range of career choices
- …