76 research outputs found

    Chromosome identification in the Andean common bean accession G19833 (Phaseolus vulgaris L., Fabaceae)

    Get PDF
    Characterization of all chromosomes of the Andean G19833 bean genotype was carried out by fluorescent in situ hybridization. Eleven single-copy genomic sequences, one for each chromosome, two BACs containing subtelomeric and pericentromeric repeats and the 5S and 45S ribosomal DNA (rDNA) were used as probes. Comparison to the Mesoamerican accession BAT93 showed little divergence, except for additional 45S rDNA sites in four chromosome pairs. Altogether, the results indicated a relative karyotypic stability during the evolution of the Andean and Mesoamerican gene pools of P. vulgaris

    Karyotype differentiation in three species of Tripogandra Raf. (Commelinaceae) with different ploidy levels

    Get PDF
    Most species of the genus Tripogandra (Commelinaceae) are taxonomically poorly circumscribed, in spite of having a relatively stable basic number x = 8. Aiming to estimate the cytological variation among Tripogandra species carrying this base number, several structural karyotypic characters were investigated in the diploid T. glandulosa, the hexaploid T. serrulata, and the octoploid T. diuretica. A careful evaluation of chromosome size and morphology did not reveal clear chromosome homeologies among karyotypes. The mean chromosome size was strongly reduced in the octoploid species, but not in the hexaploid species. They also differed largely in the CMA+ banding pattern and in the number of 5S and 45S rDNA sites per monoploid chromosome complement. All three species showed proximal DAPI + heterochromatin, although in T. serrulata this kind of heterochromatin was only visible after FISH. Further, the meiosis in T. serrulata was highly irregular, suggesting that this species has a hybrid origin. The data indicate that, in spite of the conservation of the base number, these species are karyologically quite different from each other

    Chromatin differentiation between Theobroma cacao L. and T. grandiflorum Schum

    Get PDF
    A comparative analysis of mitotic chromosomes of Theobroma cacao (cacao) and T. grandiflorum (cupuaçu) was performed aiming to identify cytological differences between the two most important species of this genus. Both species have symmetric karyotypes, with 2n = 20 metacentric chromosomes ranging in size from 2.00 to 1.19 μm (cacao) and from 2.21 to 1.15 μm (cupuaçu). The interphase nuclei of both species were of the arreticulate type, displaying up to 20 chromocentres, which were more regularly shaped in cacao than in cupuaçu. Prophase chromosomes of both species were more condensed in the proximal region, sometimes including the whole short arm. Both species exhibited only one pair of terminal heterochromatic bands, positively stained with chromomycin A 3 , which co-localized with the single 45S rDNA site. Each karyotype displayed a single 5S rDNA site in the proximal region of another chromosome pair. Heterochromatic bands were also observed on the centromeric/pericentromeric regions of all 20 chromosomes of cacao after C-banding followed by Giemsa or DAPI staining, whereas in cupuaçu they were never detected. These data suggest that the chromosomes of both species have been largely conserved and their pericentromeric chromatin is the only citologically differentiated region

    Linkage mapping of the Phg-1 and Co-14 genes for resistance to angular leaf spot and anthracnose in the common bean cultivar AND 277

    Get PDF
    The Andean common bean AND 277 has the Co-14 and the Phg-1 alleles that confer resistance to 21 and eight races, respectively, of the anthracnose (ANT) and angular leaf spot (ALS) pathogens. Because of its broad resistance spectrum, Co-14 is one of the main genes used in ANT resistance breeding. Additionally, Phg-1 is used for resistance to ALS. In this study, we elucidate the inheritance of the resistance of AND 277 to both pathogens using F2 populations from the AND 277 × Rudá and AND 277 × Ouro Negro crosses and F2:3 families from the AND 277 × Ouro Negro cross. Rudá and Ouro Negro are susceptible to all of the above races of both pathogens. Co-segregation analysis revealed that a single dominant gene in AND 277 confers resistance to races 65, 73, and 2047 of the ANT and to race 63-23 of the ALS pathogens. Co-14 and Phg-1 are tightly linked (0.0 cM) on linkage group Pv01. Through synteny mapping between common bean and soybean we also identified two new molecular markers, CV542014450 and TGA1.1570, tagging the Co-14 and Phg-1 loci. These markers are linked at 0.7 and 1.3 cM, respectively, from the Co-14/Phg-1 locus in coupling phase. The analysis of allele segregation in the BAT 93/Jalo EEP558 and California Dark Red Kidney/Yolano recombinant populations revealed that CV542014450 and TGA1.1570 segregated in the expected 1:1 ratio. Due to the physical linkage in cis configuration, Co-14 and Phg-1 are inherited together and can be monitored indirectly with the CV542014450 and TGA1.1570 markers. These results illustrate the rapid discovery of new markers through synteny mapping. These markers will reduce the time and costs associated with the pyramiding of these two disease resistance genes

    Chromosome landmarks and autosome-sex chromosome translocations in Rumex hastatulus, a plant with XX/XY1Y2 sex chromosome system

    Get PDF
    Rumex hastatulus is the North American endemic dioecious plant with heteromorphic sex chromosomes. It is differentiated into two chromosomal races: Texas (T) race characterised by a simple XX/XY sex chromosome system and North Carolina (NC) race with a polymorphic XX/XY1Y2 sex chromosome system. The gross karyotype morphology in NC race resembles the derived type, but chromosomal changes that occurred during its evolution are poorly understood. Our C-banding/DAPI and fluorescence in situ hybridization (FISH) experiments demonstrated that Y chromosomes of both races are enriched in DAPI-positive sequences and that the emergence of polymorphic sex chromosome system was accompanied by the break of ancestral Y chromosome and switch in the localization of 5S rDNA, from autosomes to sex chromosomes (X and Y2). Two contrasting domains were detected within North Carolina Y chromosomes: the older, highly heterochromatinised, inherited from the original Y chromosome and the younger, euchromatic, representing translocated autosomal material. The flow-cytometric DNA estimation showed ∼3.5 % genome downsizing in the North Carolina race. Our results are in contradiction to earlier reports on the lack of heterochromatin within Y chromosomes of this species and enable unambiguous identification of autosomes involved in the autosome-heterosome translocation, providing useful chromosome landmarks for further studies on the karyotype and sex chromosome differentiation in this species
    corecore