308 research outputs found
Functional bioglass/carbon nanocomposite scaffolds from vat photopolymerization of a novel preceramic polymer-based nanoemulsion
Silicone polymers are already known as feedstock for a variety of silicate bioceramics, in the form of scaffolds with complex shapes, obtained by Vat Photopolymerization. Printing is enabled by using silicone blended with photocurable acrylates. The development of a particular silicate composition that functions as a glass or glass-ceramic precursor is possible by the addition of suitable oxide fillers (especially carbonate powders), suspended in the polymer blend. Oxides, from the fillers, easily react with silica left by the thermal transformation of the silicone. The fillers, however, also determine complications in Vat Photopolymerization, due to light scattering; in addition, local oxide concentrations generally impede the obtainment of glassy products. The present paper illustrates a simple solution to these issues, based on the inclusion of a Ca salt in nano-emulsion within a silicone-containing blend. Homogeneous printed samples are later converted into crack-free, fully amorphous ceramic composites, by firing at only 700 °C. The glass matrix, resembling 70S30C (70 % SiO2 and 30 % CaO) bioglass, is achieved according to the quasi-molecular CaO distribution. The secondary phase, promoted by treatment in N2 atmosphere and consisting of pyrolytic carbon, provides a marked photothermal effect
BEDT-TTF organic superconductors: the entangled role of phonons
We calculate the lattice phonons and the electron-phonon coupling of the
organic superconductor \kappa-(BEDT-TTF)_2 I_3, reproducing all available
experimental data connected to phonon dynamics. Low-frequency intra-molecular
vibrations are strongly mixed to lattice phonons. Both acoustic and optical
phonons are appreciably coupled to electrons through the modulation of the
hopping integrals (e-LP coupling). By comparing the results relevant to
superconducting \kappa- and \beta-(BEDT-TTF)_2 I_3, we show that
electron-phonon coupling is fundamental to the pairing mechanism. Both e-LP and
electron-molecular vibration (e-MV) coupling are essential to reproduce the
critical temperatures. The e-LP coupling is stronger, but e-MV is instrumental
to increase the average phonon frequency.Comment: 4 pages, including 4 figures. Published version, with Ref. 17
corrected after publicatio
Multiple logistic regressions: controlling factors in applications to soil class prediction.
Métodos mais eficazes para determinação do padrão de distribuição de classes de solo na paisagem precisam ser avaliados visando suprir a demanda por mapas de solo em escalas regional e global. Neste estudo, Regressões Logísticas Múltiplas foram utilizadas como modelos preditores em uma aplicação de Mapeamento Digital de Solos. Os modelos foram gerados utilizando um mapa de solos existente como variável dependente e atributos de terreno como variáveis independentes, o que possibilitou determinar a probabilidade de encontrar classes de solo na paisagem no primeiro e no segundo nível categórico do SiBCS. A qualidade dos mapas preditos foi verificada por meio da matriz de contingência. A classe dos Argissolos foi predita corretamente, em relação ao mapa original, em aproximadamente 85 %. As classes de solos hidromórficos (Planossolos e Gleissolos) foram preditas corretamente em 75 %. Houve confundimento dos modelos para as classes que ocupam posições muito semelhantes na paisagem. Foi verificado também que classes de solo pouco representativas na paisagem não são adequadamente espacializadas em razão da sensibilidade dos modelos logísticos à proporção relativa das amostras usadas para treinar os modelos
Logarithmic diffusion and porous media equations: a unified description
In this work we present the logarithmic diffusion equation as a limit case
when the index that characterizes a nonlinear Fokker-Planck equation, in its
diffusive term, goes to zero. A linear drift and a source term are considered
in this equation. Its solution has a lorentzian form, consequently this
equation characterizes a super diffusion like a L\'evy kind. In addition is
obtained an equation that unifies the porous media and the logarithmic
diffusion equations, including a generalized diffusion equation in fractal
dimension. This unification is performed in the nonextensive thermostatistics
context and increases the possibilities about the description of anomalous
diffusive processes.Comment: 5 pages. To appear in Phys. Rev.
Theory of the optical conductivity of (TMTSF)PF in the mid-infrared range
We propose an explanation of the mid-infrared peak observed in the optical
conductivity of the Bechgaard salt (TMTSF)PF in terms of electronic
excitations. It is based on a numerical calculation of the conductivity of the
quarter-filled, dimerized Hubbard model. The main result is that, even for
intermediate values of for which the charge gap is known to be very
small, the first peak, and at the same time the main structure, of the optical
conductivity is at an energy of the order of the dimerization gap, like in the
infinite case. This surprising effect is a consequence of the optical
selection rules.Comment: 10 pages, 9 uuencoded figure
Nonlinear equation for anomalous diffusion: unified power-law and stretched exponential exact solution
The nonlinear diffusion equation is analyzed here, where , and , and are real parameters.
This equation unifies the anomalous diffusion equation on fractals ()
and the spherical anomalous diffusion for porous media (). Exact
point-source solution is obtained, enabling us to describe a large class of
subdiffusion (), normal diffusion () and
superdiffusion (). Furthermore, a thermostatistical basis
for this solution is given from the maximum entropic principle applied to the
Tsallis entropy.Comment: 3 pages, 2 eps figure
Correlation gap in the optical spectra of the two-dimensional organic metal (BEDT-TTF)_4[Ni(dto)_2]
Optical reflection measurements within the highly conducting (a,b)-plane of
the organic metal (BEDT-TTF)_4[Ni(dto)_2] reveal the gradual development of a
sharp feature at around 200 cm as the temperature is reduced below 150 K. Below
this frequency a narrow Drude-like response is observed which accounts for the
metallic behavior. Since de Haas-von Alphen oscillations at low temperatures
confirm band structure calculations of bands crossing the Fermi energy, we
assign the observed behavior to a two-dimensional metallic state in the
proximity of a correlation induced metal-insulator transition.Comment: 4 pages, 2 figure
Anti-de Sitter curvature radius constrained by quasars in brane-world scenarios
This paper is intended to investigate the luminosity due to accretion of gas
in supermassive black holes (SMBHs) in the center of quasars, using a
brane-world scenario naturally endowed with extra dimensions, whereon theories
formulated introduce corrections in the field equations at high energies. SMBHs
possess the necessary highly energetic environment for the introduction of
these corrections, which are shown to produce small deviations in all SMBH
properties and, consequentely, corrections in the accretion theory that
supports quasars radiative processes. The radiative flux observed from quasars
indicates these deviations, from which the magnitude of the AdS bulk
curvature radius, and consequently the extra dimension compactification radius
is estimated.Comment: 11 pages, RevTeX, Eq.(2) and (3) expanded, and comments thereon
update
- …