research

Nonlinear equation for anomalous diffusion: unified power-law and stretched exponential exact solution

Abstract

The nonlinear diffusion equation ρt=DΔ~ρν\frac{\partial \rho}{\partial t}=D \tilde{\Delta} \rho^\nu is analyzed here, where Δ~1rd1rrd1θr\tilde{\Delta}\equiv \frac{1}{r^{d-1}}\frac{\partial}{\partial r} r^{d-1-\theta} \frac{\partial}{\partial r}, and dd, θ\theta and ν\nu are real parameters. This equation unifies the anomalous diffusion equation on fractals (ν=1\nu =1) and the spherical anomalous diffusion for porous media (θ=0\theta=0). Exact point-source solution is obtained, enabling us to describe a large class of subdiffusion (θ>(1ν)d\theta > (1-\nu)d), normal diffusion (θ=(1ν)d\theta= (1-\nu)d) and superdiffusion (θ<(1ν)d\theta < (1-\nu)d). Furthermore, a thermostatistical basis for this solution is given from the maximum entropic principle applied to the Tsallis entropy.Comment: 3 pages, 2 eps figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020