962 research outputs found

    Spectral Graph Convolutions for Population-based Disease Prediction

    Get PDF
    Exploiting the wealth of imaging and non-imaging information for disease prediction tasks requires models capable of representing, at the same time, individual features as well as data associations between subjects from potentially large populations. Graphs provide a natural framework for such tasks, yet previous graph-based approaches focus on pairwise similarities without modelling the subjects' individual characteristics and features. On the other hand, relying solely on subject-specific imaging feature vectors fails to model the interaction and similarity between subjects, which can reduce performance. In this paper, we introduce the novel concept of Graph Convolutional Networks (GCN) for brain analysis in populations, combining imaging and non-imaging data. We represent populations as a sparse graph where its vertices are associated with image-based feature vectors and the edges encode phenotypic information. This structure was used to train a GCN model on partially labelled graphs, aiming to infer the classes of unlabelled nodes from the node features and pairwise associations between subjects. We demonstrate the potential of the method on the challenging ADNI and ABIDE databases, as a proof of concept of the benefit from integrating contextual information in classification tasks. This has a clear impact on the quality of the predictions, leading to 69.5% accuracy for ABIDE (outperforming the current state of the art of 66.8%) and 77% for ADNI for prediction of MCI conversion, significantly outperforming standard linear classifiers where only individual features are considered.Comment: International Conference on Medical Image Computing and Computer-Assisted Interventions (MICCAI) 201

    Model reconstruction from temporal data for coupled oscillator networks

    Get PDF
    In a complex system, the interactions between individual agents often lead to emergent collective behavior like spontaneous synchronization, swarming, and pattern formation. The topology of the network of interactions can have a dramatic influence over those dynamics. In many studies, researchers start with a specific model for both the intrinsic dynamics of each agent and the interaction network, and attempt to learn about the dynamics that can be observed in the model. Here we consider the inverse problem: given the dynamics of a system, can one learn about the underlying network? We investigate arbitrary networks of coupled phase-oscillators whose dynamics are characterized by synchronization. We demonstrate that, given sufficient observational data on the transient evolution of each oscillator, one can use machine learning methods to reconstruct the interaction network and simultaneously identify the parameters of a model for the intrinsic dynamics of the oscillators and their coupling.Comment: 27 pages, 7 figures, 16 table

    A Preliminary Investigation of Machine Learning Approaches for Mobility Monitoring from Smartphone Data

    Get PDF
    In this work we investigate the use of machine learning models for the management and monitoring of sustainable mobility, with particular reference to the transport mode recognition. The specific aim is to automatize the detection of the user’s means of transport among those considered in the data collected with an App installed on the users smartphones, i.e. bicycle, bus, train, car, motorbike, pedestrian locomotion. Preliminary results show the potentiality of the analysis for the introduction of reliable advanced, machine learning based, monitoring systems for sustainable mobility. © 2020, Springer Nature Switzerland AG

    Predicting Fluid Intelligence of Children using T1-weighted MR Images and a StackNet

    Full text link
    In this work, we utilize T1-weighted MR images and StackNet to predict fluid intelligence in adolescents. Our framework includes feature extraction, feature normalization, feature denoising, feature selection, training a StackNet, and predicting fluid intelligence. The extracted feature is the distribution of different brain tissues in different brain parcellation regions. The proposed StackNet consists of three layers and 11 models. Each layer uses the predictions from all previous layers including the input layer. The proposed StackNet is tested on a public benchmark Adolescent Brain Cognitive Development Neurocognitive Prediction Challenge 2019 and achieves a mean squared error of 82.42 on the combined training and validation set with 10-fold cross-validation. In addition, the proposed StackNet also achieves a mean squared error of 94.25 on the testing data. The source code is available on GitHub.Comment: 8 pages, 2 figures, 3 tables, Accepted by MICCAI ABCD-NP Challenge 2019; Added ND

    Reconstructing dynamical networks via feature ranking

    Full text link
    Empirical data on real complex systems are becoming increasingly available. Parallel to this is the need for new methods of reconstructing (inferring) the topology of networks from time-resolved observations of their node-dynamics. The methods based on physical insights often rely on strong assumptions about the properties and dynamics of the scrutinized network. Here, we use the insights from machine learning to design a new method of network reconstruction that essentially makes no such assumptions. Specifically, we interpret the available trajectories (data) as features, and use two independent feature ranking approaches -- Random forest and RReliefF -- to rank the importance of each node for predicting the value of each other node, which yields the reconstructed adjacency matrix. We show that our method is fairly robust to coupling strength, system size, trajectory length and noise. We also find that the reconstruction quality strongly depends on the dynamical regime

    Memory-Efficient Incremental Learning Through Feature Adaptation

    Full text link
    We introduce an approach for incremental learning that preserves feature descriptors of training images from previously learned classes, instead of the images themselves, unlike most existing work. Keeping the much lower-dimensional feature embeddings of images reduces the memory footprint significantly. We assume that the model is updated incrementally for new classes as new data becomes available sequentially.This requires adapting the previously stored feature vectors to the updated feature space without having access to the corresponding original training images. Feature adaptation is learned with a multi-layer perceptron, which is trained on feature pairs corresponding to the outputs of the original and updated network on a training image. We validate experimentally that such a transformation generalizes well to the features of the previous set of classes, and maps features to a discriminative subspace in the feature space. As a result, the classifier is optimized jointly over new and old classes without requiring old class images. Experimental results show that our method achieves state-of-the-art classification accuracy in incremental learning benchmarks, while having at least an order of magnitude lower memory footprint compared to image-preserving strategies

    Salts of 5-amino-2-sulfonamide-1,3,4-thiadiazole, a structural and analog of acetazolamide, show interesting carbonic anhydrase inhibitory properties, diuretic, and anticonvulsant action

    Get PDF
    Three salts of 5-amino-2-sulfonamide-1,3,4-thiadiazole (Hats) were prepared and characterized by physico-chemical methods. The p-toluensulfonate, the methylsulfonate, and the chlorhydrate monohydrate salts of Hats were evaluated as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs) and as anticonvulsants and diuretics, since many CAIs are clinically used as pharmacological agents. The three Hats salts exhibited diuretic and anticonvulsant activities with little neurotoxicity. The human (h) isoforms hCA I, II, IV, VII, IX, and XII were inhibited in their micromolar range by these salts, whereas pathogenic beta and gamma CAs showed similar, weak inhibitory profiles.Fil: Diaz, Jorge R. A.. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Área Química General e Inorgánica; ArgentinaFil: Camí, Gerardo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; ArgentinaFil: Liu González, Malva. Universidad de Valencia; EspañaFil: Vega, Daniel Roberto. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vullo, Daniela. Università degli Studi di Firenze; ItaliaFil: Juárez, Américo. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia; ArgentinaFil: Pedregosa, Jose Carmelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; ArgentinaFil: Supuran, Claudiu T.. Università degli Studi di Firenze; Itali

    BlinkML: Efficient Maximum Likelihood Estimation with Probabilistic Guarantees

    Full text link
    The rising volume of datasets has made training machine learning (ML) models a major computational cost in the enterprise. Given the iterative nature of model and parameter tuning, many analysts use a small sample of their entire data during their initial stage of analysis to make quick decisions (e.g., what features or hyperparameters to use) and use the entire dataset only in later stages (i.e., when they have converged to a specific model). This sampling, however, is performed in an ad-hoc fashion. Most practitioners cannot precisely capture the effect of sampling on the quality of their model, and eventually on their decision-making process during the tuning phase. Moreover, without systematic support for sampling operators, many optimizations and reuse opportunities are lost. In this paper, we introduce BlinkML, a system for fast, quality-guaranteed ML training. BlinkML allows users to make error-computation tradeoffs: instead of training a model on their full data (i.e., full model), BlinkML can quickly train an approximate model with quality guarantees using a sample. The quality guarantees ensure that, with high probability, the approximate model makes the same predictions as the full model. BlinkML currently supports any ML model that relies on maximum likelihood estimation (MLE), which includes Generalized Linear Models (e.g., linear regression, logistic regression, max entropy classifier, Poisson regression) as well as PPCA (Probabilistic Principal Component Analysis). Our experiments show that BlinkML can speed up the training of large-scale ML tasks by 6.26x-629x while guaranteeing the same predictions, with 95% probability, as the full model.Comment: 22 pages, SIGMOD 201
    corecore