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Abstract. In this work we investigate the use of machine learning models for the 

management and monitoring of sustainable mobility, with particular reference to 

the transport mode recognition. The specific aim is to automatize the detection 

of the user's means of transport among those considered in the data collected with 

an App installed on the users smartphones, i.e. bicycle, bus, train, car, motorbike, 

pedestrian locomotion. Preliminary results show the potentiality of the analysis 

for the introduction of reliable advanced, machine learning based, monitoring 

systems for sustainable mobility. 

Keywords: Sustainable Mobility, Machine Learning, Transport Mode Recogni-

tion. 

1 Introduction 

The results of the GOOD_GO platform testing application made in Leghorn Munic-

ipality show how the union of its disincentive system for bike theft with the sustainable 

mobility rewarding system are able of attracting citizens to the use of the APP, provid-

ing an important flywheel to encourage sustainable mobility and for bottom-up and 

low-cost monitoring of daily movements and the impacts of mobility actions imple-

mented by city administrations. 

Results also indicated some critical points of the platform, in particular the following 

elements: 

- many users forget to start the movement monitoring and to indicate the mode of 

transport used inside the GOOD_GO App for smartphone; 

- the stolen bicycles detection system is excessively expensive and requires more 

automation; 

- despite the advantage of the very low cost, RFid passive tags are affected by the 

metal noise of nearby bicycles, significantly disturbing radio frequency messages. 

In this paper we describe a way to address the first critical point by investigating the 

use of Artificial Intelligence, and in particular of Machine Learning, approaches to the 
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management and monitoring of sustainable mobility. The aim is to automatize the 

recognition of the user's means of transport among those considered in the data col-

lected with the current application (GOOD_GO smartphone App), namely: bicycle 

(bike), bus, train, car, motorbike, and pedestrian locomotion (foot). In order to develop 

an automatic detection system, a series of activities have been pursued, in relation to: 

data acquisition and pre-processing for mobility purposes, formulation of the computa-

tional task in the Machine Learning context, selection of input features and of learning 

models, analysis of the results. 

The rest of this paper is structured as follows. In Section 2 we introduce the innova-

tive features of the GOOD_GO system and its links to rewards and anti-theft systems. 

In Section 3 we describe the adopted methodologies for estimation of the transport 

mode from smartphone gathered streams of data, focusing on the required pre-pro-

cessing steps and on the phases of data and learning models selection. The results of 

our experimental analysis are given in Section 4. Finally, in Section 5 we delineate 

conclusions and future perspectives of our work. 

2 The GOOD_GO System 

Briefly, here, the whole GOOD_GO sustainable mobility platform and its related 

SaveMyBike system is presented, remanding readers to other papers where its frame-

work is described in more detail [1, 2, 3, 4]. Moreover, we present some data relative 

to the prototypical test already done involving about one thousand inhabitants of Leg-

horn Municipality in the end of 2018. 

The Good_Go Platform is a ‘space of services’ for sustainable mobility users linked 

to ITS sensors and an ICT social platform capable of:   

• monitoring bicycle trips and all the other transport modes by using an APP for 

smartphone; 

• creating secure areas for private bike parking; 

• finding stolen bicycles; 

• rewarding people who perform sustainable trips in the city; 

• organizing sustainable mobility competition at different scale level (whole city, 

institutional system like hospital, university or single company/school). 

The platform, by means of the previous presented services, tries to develop features 

able to attract the interest of citizen in the use of the App and so able to build a signifi-

cative population sample (at low-cost respect to other data acquisition method like the 

use of ITS) with the relative trips data. The open source nature of the platform follows 

the same criteria of low-cost monitoring system, with the possibility to use the code 

and the App without any license and, then, enabling the mobility monitoring also for 

little-medium municipalities where financial resources for  expensive ITS system are 

not  available.  

The  testing application done for 4 months in the end of 2018 has showed a great 

appeal for citizen because in only one week we reached the maximum number of par-

ticipants (for the prototypical application) of one thousands subscribers to the 
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GOOD_GO app. In the application more than 1.500 trips were collected along with all 

information regarding transport modes, emissions, cost and health indices (see Fig. 1). 

 
Fig. 1. Monitored trips in the Leghorn testing case. 

 

The App, at the moment, has a section where users need to indicate manually the 

transport mode (see Fig. 2). In this way, the manual insertion of the transport modes 

with the tracking by a non-automatic start and end becomes an element of weakness of 

the system as it introduces possible errors due to following facts:   
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• the user can forget to start or stop the tracking; 

• the user can forget to change transport mode in intermodal trips; 

• the user can insert wrong transport mode trying to collect a greater number of 

points for the reward system (even if there are, however, empirical rules useful 

to identify these erroneous data entries). 
 

 

Fig. 2. The form of the smartphone App where to start and stop tracking, selecting the 

transport mode used. 
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3 Methods 

In this section, we describe the adopted methodology for data processing and setup 

of the learning models. Specifically, we describe the aspects of data pre-processing and 

learning task definition in Section 3.1, while in Section 3.2 we focus on feature and 

learning models selection. 

 

3.1 Data acquisition, pre-processing and formulation of the computational 

learning task 

A careful analysis of the data collected from the users registered to the system 

through the App developed in the project was necessary. The data were critical in terms 

of uniformity of sampling, number of available samples for the different means of 

transport, missing data, significance of the available features (attributes), as well as 

noise of the samples. While the last two characteristics are common to applications that 

require the use of Machine Learning methods, and motivate its use, the former have 

required pre-processing operations that include filtering and imputation (replacement 

of values). 

The input variables include 3D accelerometers, pressure, proximity, speed, longi-

tude, latitude, roll, pitch, bearing, and lumen. In particular, the pre-processing opera-

tions applied to each input variable were the following: (a) uniform resampling at con-

stant 1 second resolution, i.e., 1 Hz; (b) filling of NaN (not available) values using 

padding with the last valid observation; (c) filtering using moving average over periods 

of 1 minute; and (d) uniform resampling at constant 1 minute resolution. Finally, to 

create the inputs to be provided to the Machine Learning models, for each input se-

quence we extracted 3 features for each input variable, namely average (avg), standard 

deviation (std), and maximum value (max). The feature extraction in the considered 

form has allowed the analysis through a set of Machine Learning approaches for vector 

data (see Section 3.2), in the light of a first evaluation of the involved challenges. The 

learning problem is configured as a multi-class classification task with 6 classes, one 

for each transport mode, starting from the streams (traces) of sensors data extracted 

from the smartphone App (and preprocessed as described above).  

Overall, the extracted dataset includes 2636 samples, 33 input variables, plus 1 target 

class variable that encodes the transport medium. 

A significant and critical aspect in the present dataset is the strong unbalance of the 

classes present, i.e. the sequences recorded for each type of transport mode. As shown 

in Fig. 3, the vast majority of the data pertains to the bike transport mode (≈ 82%), 

followed by foot (≈ 8%) and bus (≈ 7%), while train and car modes of transportation 

both represents ≈1% of the available data. Only 12 samples for motorbike transporta-

tion are available (less than 1% of the data). To counteract the effects of this imbalance 

in the available data, resampling policies (oversampling) have been considered. Also 

in consideration of these aspects, the assessment of the learning models’ performance 

was conducted by using both multi-class accuracy (on the 6 classes), and macro F1 

score, as follows: 
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𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑡𝑝𝑖𝑖=1,…,6

∑ 𝑁𝑖𝑖=1,…,6

, 

 

𝐹1 =  2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑎𝑣  𝑟𝑒𝑐𝑎𝑙𝑙𝑎𝑣

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑎𝑣 + 𝑟𝑒𝑐𝑎𝑙𝑙𝑎𝑣

, 

 

where 𝑡𝑝𝑖  indicates the number of true positives for the i-th class, 𝑁𝑖 is the total 

number of samples pertaining to the i-th class, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑎𝑣 and 𝑟𝑒𝑐𝑎𝑙𝑙𝑎𝑣  respectively 

denote the precision and the recall measures, macro-averaged among the classes. 

 

 

 

Fig. 3. Available samples for each transport mode. 

 

3.2 Selection of models and features 

In consideration of the peculiarity of the available data, and to favor the simplicity of 

the system, the considered approach has been based on the use of features extracted on 

whole sequences (recorded temporal traces), as described above in Section 3.1. Data 

was divided into a training (or development) set and an external test set (unseen during 

model calibration phase), according to a stratified 80%-20% split.  

We explored different version of the learning tasks, originated from different feature 

selection policies on the available data. Specifically, we analyzed the following three 

configurations: (a) full features, in which all the input features (processed as described 

in Section 3.1) were considered; (b) selected features, comprising the 10 features that 

were found to be maximally correlated (in absolute value) with the target variable (i.e., 

max, avg and std of device bearing, max, avg and std of speed, max lumen, std pressure, 

avg X-accelerometer, and std Z-accelerometer); (c) ad-hoc features, where a minimal 

set of features were selected based on an a-priori presumable significance (i.e., max 

speed and std on the 3D accelerometers).  

 In our preliminary experimental analysis, we considered a set of classification mod-

els comprising different methodologies, including feed-forward Neural Networks, in-

stantiated as Multi-layer Perceptrons (MLPs) with 1 or 2 hidden layers [5], Random 

Forest (RF) [6], and K-Nearest Neighbors (K-NN) [7]. All of these learning models 
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were evaluated on all the data configuration described above, i.e. full features, selected 

features, and ad-hoc features. The software library (scikit-learn) is publicly available 

[8]. 

The hyper-parameters of each learning model were optimized (individually for each 

model) on a nested level of stratified 5-fold cross validation on the training (develop-

ment) split, using grid search. In particular, for MLP with 1 hidden layer, i.e. MLP-1, 

we explored values of the hidden layer’s size (number of units) in {10, 50, 100, 500}. 

For MLPs with 2 hidden layers, i.e. MLP-2, we explored cases the 2 hidden layers had 

the same size, varying in {10, 50, 100, 500}. For RF, we explored configurations with 

a number of estimators (decision trees) in {10, 20, 50, 100, 200, 500}. For K-NN, we 

explored the size K of the neighborhood in {3, 5, 10, 50, 100}. All other hyper-param-

eters were set to the default values, using the scikit-learn library [8]. 

4 Results 

In this section, we describe the results achieved by our experimental analysis. In con-

sideration of the fact that the available dataset is heavily imbalanced, the macro F1 

score was used at phase of model selection, while for test assessment we used the ac-

curacy, on order to have a score that is closer to human understanding. 

The achieved results are reported in Table 1, which shows the validation and test 

performance achieved by MLP-1, MLP-2, RF and K-NN on the three dataset configu-

rations considered (i.e., full features, selected features, ad-hoc features). 

Within the limits of the preliminary investigation targeted in this work, the results 

appear to be very good, with the best models having F1 values and accuracy greater 

than 0.9 on both validation and external test data. Overall, the best result is achieved by 

RF in the case of full features configuration, reaching 0.904 of F1 score on validation, 

1.00 accuracy on training, and 0.919 accuracy on test. We can also observe that, in 

general, the higher performance is obtained in the full features configuration, with a 

gentle reduction in correspondence of the cases of selected features and ad-hoc features 

configurations. This indicates that the quality of the estimation does not degrade dra-

matically when a smaller set of input sources is available to the system. 

The performance of the best overall model (RF with full features) is further analyzed 

in Fig. 4, which shows the corresponding confusion matrix on the test set. It is evident 

to see that the model achieves high accuracy especially on the 3 classes that are suffi-

ciently sampled, i.e. foot, bike and bus. The performance is lower in correspondence of 

the under-sampled classes, i.e. motorbike, car and train which have 1% of the data com-

pared to the bike class alone, and on which therefore also the test estimation is much 

less statistically significant. 
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Table 1. Results achieved on all the dataset configurations by the considered learning models. 

Best results are highlighted in bold font. 

Model Features Validation F1-score Test accuracy 

MLP-1 full 0.600 0.748 

MLP-1 selected 0.426 0.608 

MLP-1 ad-hoc 0.455 0.689 

MLP-2 full 0.688 0.828 

MLP-2 selected 0.549 0.773 

MLP-2 ad-hoc 0.578 0.710 

RF full 0.904 0.919 

RF selected 0.902 0.903 

RF ad-hoc 0.858 0.814 

K-NN full 0.542 0.813 

K-NN selected 0.545 0.777 

K-NN ad-hoc 0.521 0.754 

 

 

Fig. 4. Confusion matrix for RF, computed on the test set. 

 

 

Having covered with significantly high values the accuracy for the three main transpor-

tation modes where sampling was sufficient for calibration and testing (i.e. bike, bus 

and foot), the system has shown its potentiality and its flexibility in this context. In 

addition, confusion matrices of other learning models, such as those based on neural 

networks, showed a better behavior than RF in some cases confined to specific classes. 

For example, in Fig. 5 we show the confusion matrix for MLP-1 with full features, from 

which we can see a gain, in comparison to RF in Fig. 4, on the transportation modes of 

foot, bus and motorbike. This consideration puts forward further enhancing potentiali-

ties in relation to investigations of the interplay between different learning models. 
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Fig. 5. Confusion matrix for MLP-1, computed on the test set. 

 

 

5 Conclusions and Perspectives 

In this paper we have presented a preliminary experimental analysis of the application 

of Machine Learning methodologies to the problem of estimating human transportation 

mode from smartphone sensors. The achieved results were significant. In view of the 

peculiarities of the data, the overall external test accuracy over 90% represents a posi-

tive aspect. The performance scales with the number of samples in the classes, inde-

pendently of the learning models used. This indicates as a possible line of broadening 

of the study, the continuation of a data collection, with a focus on the classes that were 

less sampled so far (i.e., non-cycling vehicles). 

Finally, the preliminary research presented in this paper opens the way to further studies 

also from a Machine Learning perspective. In this regard, an interesting direction con-

sists in conducting a more in-depth cross-validation of the learning models. Another 

relevant line would be to extend the analysis to learning models for time series, e.g. 

Recurrent Neural Networks [9] (or hybrid neural architectures), enabling to naturally 

taking into account the temporal nature of the mobility data involved in the predictions. 

The final aim is that of contributing to the creation of an advanced and reliable human 

monitoring system for sustainable mobility. Moreover, monitored data, in the future, 

will be geoprocessed with data coming from other sources (health or metereological-

data, land use data [10], data coming from ITS located in the city [11] or data regarding 

urban and building/activities field) so to extract further important knowledge elements 

useful for decision support system. 
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