1,118 research outputs found

    Correcting symmetry imperfections in linear multipole traps

    Get PDF
    Multipole radio-frequency traps are central to collisional experiments in cryogenic environments. They also offer possibilities to generate new type of ion crystals topologies and in particular the potential to create infinite 1D/2D structures: ion rings and ion tubes. However, multipole traps have also been shown to be very sensitive to geometrical misalignment of the trap rods, leading to additional local trapping minima. The present work proposes a method to correct non-ideal potentials, by modifying the applied radio-frequency amplitudes for each trap rod. This approach is discussed for the octupole trap, leading to the restitution of the ideal Mexican-Hat-like pseudo-potential, expected in multipole traps. The goodness of the compensation method is quantified in terms of the choice of the diagnosis area, the residual trapping potential variations, the required adaptation of the applied radio-frequency voltage amplitudes, and the impact on the trapped ion structures. Experimental implementation for macroscopic multipole traps is also discussed, in order to propose a diagnostic method with respect to the resolution and stability of the trap drive. Using the proposed compensation technique, we discuss the feasibility of generating a homogeneous ion ring crystal, which is a measure of quality for the obtained potential well

    Fast accumulation of ions in a dual trap

    Full text link
    Transporting charged particles between different traps has become an important feature in high-precision spectroscopy experiments of different types. In many experiments in atomic and molecular physics, the optical probing of the ions is not carried out at the same location as the creation or state preparation. In our double linear radio-frequency trap, we have implemented a fast protocol allowing to shuttle large ion clouds very efficiently between traps, in times shorter than a millisecond. Moreover, our shuttling protocol is a one-way process, allowing to add ions to an existing cloud without loss of the already trapped sample. This feature makes accumulation possible, resulting in the creation of large ion clouds. Experimental results show, that ion clouds of large size are reached with laser-cooling, however, the described mechanism does not rely on any cooling process

    Parallel ion strings in linear multipole traps

    Full text link
    Additional radio-frequency (rf) potentials applied to linear multipole traps create extra field nodes in the radial plane which allow one to confine single ions, or strings of ions, in totally rf field-free regions. The number of nodes depends on the order of the applied multipole potentials and their relative distance can be easily tuned by the amplitude variation of the applied voltages. Simulations using molecular dynamics show that strings of ions can be laser cooled down to the Doppler limit in all directions of space. Once cooled, organized systems can be moved with very limited heating, even if the cooling process is turned off

    Anharmonic contributions in real RF linear quadrupole traps

    No full text
    See also erratum at : http://www.sciencedirect.com/science/article/pii/S1387380610001004International audienceThe radiofrequency quadrupole linear ion trap is a widely used device in physics and chemistry. When used for trapping of large ion clouds, the presence of anharmonic terms in the radiofrequency potential limits the total number of stored ions. In this paper, we have studied the anharmonic content of the trapping potential for different implementations of a quadrupole trap, searching for the geometry best suited for the trapping of large ion clouds. This is done by calculating the potential of a real trap using SIMION8.0, followed by a fit, which allows us to obtain the evolution of anharmonic terms for a large part of the inner volume of the trap

    An ion ring in a linear multipole trap for optical frequency metrology

    Full text link
    A ring crystal of ions trapped in a linear multipole trap is studied as a basis for an optical frequency standard. The equilibrium conditions and cooling possibilities are discussed through an analytical model and molecular dynamics simulations. A configuration which reduces the frequency sensitivity to the fluctuations of the number of trapped ions is proposed. The systematic shifts for the electric quadrupole transition of calcium ions are evaluated for this ring configuration. This study shows that a ring of 10 or 20 ions allows to reach a short term stability better than for a single ion without introducing limiting long term fluctuations

    Large-scale diversity estimation through surname origin inference

    Full text link
    The study of surnames as both linguistic and geographical markers of the past has proven valuable in several research fields spanning from biology and genetics to demography and social mobility. This article builds upon the existing literature to conceive and develop a surname origin classifier based on a data-driven typology. This enables us to explore a methodology to describe large-scale estimates of the relative diversity of social groups, especially when such data is scarcely available. We subsequently analyze the representativeness of surname origins for 15 socio-professional groups in France

    Ion dynamics in a linear radio-frequency trap with a single cooling laser

    Full text link
    We analyse the possibility of cooling ions with a single laser beam, due to the coupling between the three components of their motion induced by the Coulomb interaction. For this purpose, we numerically study the dynamics of ion clouds of up to 140 particles, trapped in a linear quadrupole potential and cooled with a laser beam propagating in the radial plane. We use Molecular Dynamics simulations and model the laser cooling by a stochastic process. For each component of the motion, we systematically study the dependence of the temperature with the anisotropy of the trapping potential. Results obtained using the full radio-frequency (rf) potential are compared to those of the corresponding pseudo-potential. In the rf case, the rotation symmetry of the potential has to be broken to keep ions inside the trap. Then, as for the pseudo-potential case, we show that the efficiency of the Coulomb coupling to thermalize the components of motion depends on the geometrical configuration of the cloud. Coulomb coupling appears to be not efficient when the ions organise as a line or a pancake and the three components of motion reach the same temperature only if the cloud extends in three dimensions

    MRI-based Surgical Planning for Lumbar Spinal Stenosis

    Full text link
    The most common reason for spinal surgery in elderly patients is lumbar spinal stenosis(LSS). For LSS, treatment decisions based on clinical and radiological information as well as personal experience of the surgeon shows large variance. Thus a standardized support system is of high value for a more objective and reproducible decision. In this work, we develop an automated algorithm to localize the stenosis causing the symptoms of the patient in magnetic resonance imaging (MRI). With 22 MRI features of each of five spinal levels of 321 patients, we show it is possible to predict the location of lesion triggering the symptoms. To support this hypothesis, we conduct an automated analysis of labeled and unlabeled MRI scans extracted from 788 patients. We confirm quantitatively the importance of radiological information and provide an algorithmic pipeline for working with raw MRI scans

    Simultaneous Matrix Diagonalization for Structural Brain Networks Classification

    Full text link
    This paper considers the problem of brain disease classification based on connectome data. A connectome is a network representation of a human brain. The typical connectome classification problem is very challenging because of the small sample size and high dimensionality of the data. We propose to use simultaneous approximate diagonalization of adjacency matrices in order to compute their eigenstructures in more stable way. The obtained approximate eigenvalues are further used as features for classification. The proposed approach is demonstrated to be efficient for detection of Alzheimer's disease, outperforming simple baselines and competing with state-of-the-art approaches to brain disease classification

    Sustainable Orientation of Management Capability and Innovative Performance: The Mediating Effect of Knowledge Management

    Get PDF
    The literature suggests that innovation allows organizations to reach a desirable level of sustainability. There is evidence to support the role of knowledge management (KM) as well as management capability (MC) in producing a sustainable approach at organizations. Furthermore, organizations commonly achieve sustainable practices through corporate social responsibility (CSR). In particular, the health sector is increasingly implementing CSR strategies, although with a narrow understanding of the factors to success. Hence, trends lead to asymmetric growth between organizations. This study aims to examine the mediating role of KM in the relationship between MC and innovative performance (IP) in 331 Health Provider Institutions (HPIs). The research reflective model was assessed through Partial Least Squares Structural Equation Modeling (PLS-SEM). According to the results, MC has a positive effect on IP, MC has a positive effect on KM, and KM has a positive effect on IP. Likewise, KM significantly mediates the relationship between MC and IP. Our findings support the importance of KM in addressing MCs in HPIs as it enables innovative practices to address CSR goals to achieve a sustainable impact. Moreover, this study contributes by expanding KM to contexts that are not usually studied, such as health in a South American country
    corecore