176 research outputs found

    Line-Strength Indices in Bright Spheroidals: Evidence for a Stellar Population Dichotomy between Spheroidal and Elliptical Galaxies

    Get PDF
    We present new measurements of central line-strength indices (namely Mg2, , and Hbeta and gradients for a sample of 6 bright spheroidal galaxies (Sph's) in the Virgo cluster. Comparison with similar measurements for elliptical galaxies (E's), galactic globular clusters (GGC's), and stellar population models yield the following results: (1) In contrast with bright E's, bright Sph's are consistent with solar abundance [Mg/Fe] ratios; (2) Bright Sph's exhibit metallicities ranging from values typical for metal-rich GGC's to those for E's; (3) Although absolute mean ages are quite model dependent, we find evidence that the stellar populations of some (if not all) Sph's look significantly younger than GGC's; and (4) Mg2 gradients of bright Sph's are significantly shallower than those of E galaxies. We conclude that the dichotomy found in the structural properties of Sph and E galaxies is also observed in their stellar populations. A tentative interpretation in terms of differences in star formation histories is suggested.Comment: 14 pages, LaTeX file + 2 PostScript figures, aasms4.sty require

    CAFE: Calar Alto Fiber-fed Echelle spectrograph

    Full text link
    We present here CAFE, the Calar Alto Fiber-fed Echelle spectrograph, a new instrument built at the Centro Astronomico Hispano Alem\'an (CAHA). CAFE is a single fiber, high-resolution (RR\sim70000) spectrograph, covering the wavelength range between 3650-9800\AA. It was built on the basis of the common design for Echelle spectrographs. Its main aim is to measure radial velocities of stellar objects up to VV\sim13-14 mag with a precision as good as a few tens of ms1m s^{-1}. To achieve this goal the design was simplified at maximum, removing all possible movable components, the central wavelength is fixed, so the wavelentgth coverage; no filter wheel, one slit and so on, with a particular care taken in the thermal and mechanical stability. The instrument is fully operational and publically accessible at the 2.2m telescope of the Calar Alto Observatory. In this article we describe (i) the design, summarizing its manufacturing phase; (ii) characterize the main properties of the instrument; (iii) describe the reduction pipeline; and (iv) show the results from the first light and commissioning runs. The preliminar results indicate that the instrument fulfill the specifications and it can achieve the foreseen goals. In particular, they show that the instrument is more efficient than anticipated, reaching a S/NS/N\sim20 for a stellar object as faint as VV\sim14.5 mag in \sim2700s integration time. The instrument is a wonderful machine for exoplanetary research (by studying large samples of possible systems cotaining massive planets), galactic dynamics (high precise radial velocities in moving groups or stellar associations) or astrochemistry.Comment: 12 pages, 23 figures; Acepted for publishing in A&A, 201

    Internal Kinematics of Luminous Compact Blue Galaxies

    Full text link
    We describe the dynamical properties which may be inferred from HST/STIS spectroscopic observations of luminous compact blue galaxies (LCBGs) between 0.1<z<0.7. While the sample is homogeneous in blue rest-frame color, small size and line-width, and high surface-brightness, their detailed morphology is eclectic. Here we determine the amplitude of rotation versus random, or disturbed motions of the ionized gas. This information affirms the accuracy of dynamical mass and M/L estimates from Keck integrated line-widths, and hence also the predictions of the photometric fading of these unusual galaxies. The resolved kinematics indicates this small subset of LCBGs are dynamically hot, and unlikely to be embedded in disk systems.Comment: To appear in "Starbursts: from 30 Doradus to Lyman Break Galaxies" 2005, eds. R. de Grijs and R. M. Gonzalez Delgado (Kluwer

    Tunable injectable alginate-based hydrogel for cell therapy in Type 1 Diabetes Mellitus

    Get PDF
    Islet transplantation has the potential of reestablishing naturally-regulated insulin production in Type 1 diabetic patients. Nevertheless, this procedure is limited due to the low islet survival after transplantation and the lifelong immunosuppression to avoid rejection. Islet embedding within a biocompatible matrix provides mechanical protection and a physical barrier against the immune system thus, increasing islet survival. Alginate is the preferred biomaterial used for embedding insulin-producing cells because of its biocompatibility, low toxicity and ease of gelation. However, alginate gelation is poorly controlled, affecting its physicochemical properties as an injectable biomaterial. Including different concentrations of the phosphate salt Na2HPO4 in alginate hydrogels, we can modulate their gelation time, tuning their physicochemical properties like stiffness and porosity while maintaining an appropriate injectability. Moreover, these hydrogels showed good biocompatibility when embedding a rat insulinoma cell line, especially at low Na2HPO4 concentrations, indicating that these hydrogels have potential as injectable biomaterials for Type 1 Diabetes Mellitus treatment

    Advances in the slow freezing cryopreservation of microencapsulated cells

    Get PDF
    Over the past few decades, the use of cell microencapsulation technology has been promoted for a wide range of applications as sustained drug delivery systems or as cells containing biosystems for regenerative medicine. However, difficulty in their preservation and storage has limited their availability to healthcare centers. Because the preservation in cryogenic temperatures poses many biological and biophysical challenges and that the technology has not been well understood, the slow cooling cryopreservation, which is the most used technique worldwide, has not given full measure of its full potential application yet. This review will discuss the different steps that should be understood and taken into account to preserve microencapsulated cells by slow freezing in a successful and simple manner. Moreover, it will review the slow freezing preservation of alginate-based microencapsulated cells and discuss some recommendations that the research community may pursue to optimize the preservation of microencapsulated cells, enabling the therapy translate from bench to the clinic

    Design of a nasal spray based on cardiospermum halicacabum extract loaded in phospholipid vesicles enriched with gelatin or chondroitin sulfate

    Get PDF
    The extract of Cardiospermum halicacabum L. (C. halicacabum) obtained from flower, leaf and vine was loaded into modified phospholipid vesicles aiming at obtaining sprayable, biocompatible and effective nasal spray formulations for the treatment of nasopharyngeal diseases. Penetration enhancer-containing vesicles (PEVs) and hyalurosomes were formulated, and stabilized by adding a commercial gelatin from fish (20 mg/mL) or chondroitin sulfate from catshark cartilages (Scyliorhi-nus canicula, 20 mg/mL). Cryo-TEM images confirmed the formation of spherical vesicles, while photon correlation spectroscopy analysis disclosed the formation of small and negatively-charged vesicles. PEVs were the smaller vesicles (~100 nm) along with gelatin-hyalurosomes (~120 nm), while chondroitin-PEVs and chondroitin-hyalurosomes were larger (~160 nm). Dispersions prepared with chondroitin sulfate were more homogeneous, as the polydispersity index was ~0.15. The in vitro analysis of the droplet size distribution, average velocity module and spray cone angle suggested a good spray-ability and deposition of formulations in the nasal cavity, as the mean diameter of the droplets was in the range recommended by the Food and Drug Administration for nasal targets. The spray plume analysis confirmed the ability of PEVs, gelatin-PEVs, hyalurosomes and gelatin-hyalurosomes to be atomized in fine droplets homogenously distributed in a full cone plume, with an angle ranging from 25 to 30◦ . Moreover, vesicles were highly biocompatible and capable of protecting the epithelial cells against oxidative damage, thus preventing the inflammatory state

    Extraction of the antioxidant phytocomplex from wine-making by-products and sustainable loading in phospholipid vesicles specifically tailored for skin protection

    Get PDF
    The present study is aimed at valorizing grape pomace, one of the most abundant winery-making by-products of the Mediterranean area, through the extraction of the main bioactive compounds from the skin of grape pomace and using them to manufacture innovative nanoformulations capable of both avoiding skin damages and promoting skincare. The phytochemicals were recovered through maceration in hydroethanolic solution. Catechin, quercetin, fisetin and gallic acid, which are known for their antioxidant power, were detected as the main compounds of the extract. Liposomes and phospholipid vesicles modified with glycerol or Montanov 82® or a combination of both, were used as carriers for the extract. The vesicles were small (~183 nm), slightly polydispersed (PI ≥ 0.28), and highly negatively charged (~−50 mV). The extract was loaded in high amounts in all vesicles (~100%) irrespective of their composition. The antioxidant activity of the extract, measured by using the DPPH (2,2-Diphenyl-1-picrylhydrazyl) test, was 84 ± 1%, and slightly increased when loaded into the vesicles (~89%, P &lt; 0.05). The grape pomace extract loaded vesicles were highly biocompatible and able to protect fibroblasts (3T3) from the oxidative stress induced by hydrogen peroxide

    Force Spectroscopy Imaging and Constriction Assays Reveal the Effects of Graphene Oxide on the Mechanical Properties of Alginate Microcapsules

    Get PDF
    Microencapsulation of cells in hydrogel-based porous matrices is an approach that has demonstrated great success in regenerative cell therapy. These microcapsules work by concealing the exogenous cells and materials in a robust biomaterial that prevents their recognition by the immune system. A vast number of formulations and additives are continuously being tested to optimize cell viability and mechanical properties of the hydrogel. Determining the effects of new microcapsule additives is a lengthy process that usually requires extensive in vitro and in vivo testing. In this paper, we developed a workflow using nanoindentation (i.e., indentation with a nanoprobe in an atomic force microscope) and a custom-built microfluidic constriction device to characterize the effect of graphene oxide (GO) on three microcapsule formulations. With our workflow, we determined that GO modifies the microcapsule stiffness and surface properties in a formulation-dependent manner. Our results also suggest, for the first time, that GO alters the conformation of the microcapsule hydrogel and its interaction with subsequent coatings. Overall, our workflow can infer the effects of new additives on microcapsule surfaces. Thus, our workflow can contribute to diminishing the time required for the validation of new microcapsule formulations and accelerate their clinical translation

    Femtosecond laser microstructuring of zirconia dental implants

    Get PDF
    This study evaluated the suitability of femtosecond laser for microtexturizing cylindrical zirconia dental implants surface. Sixty-six cylindrical zirconia implants were used and divided into three groups: Control group (with no laser modification), Group A (microgropored texture), and Group B (microgrooved texture). Scanning electron microscopy observation of microgeometries revealed minimal collateral damage of the original surface surrounding the treated areas. Optical interferometric profilometry showed that ultrafast laser ablation increased surface roughness (Ra, Rq, Rz, and Rt) significantly for both textured patterns from 1.2× to 6×-fold when compared with the control group (p Group B 8.4% ± 0.42% > Group A 1.6% ± 0.35%) and aluminum (Control 4.3% ± 0.9% > Group B 2.3% ± 0.3% > Group A 1.16% ± 0.2%) in the laser-treated surfaces (p Group A 1.94% > Group B 1.72%) as the surfaces were processed with ultrashort laser pulses. We concluded that femtosecond laser microstructuring offers an interesting alternative to conventional surface treatments of zirconia implants as a result of its precision and minimal damage of the surrounding areas

    Development, characterization and sterilisation of Nanocellulose-alginate-(hyaluronic acid)- bioinks and 3D bioprinted scaffolds for tissue engineering

    Get PDF
    3D-bioprinting is an emerging technology of high potential in tissue engineering (TE), since it shows effective control over scaffold fabrication and cell distribution. Biopolymers such as alginate (Alg), nanofibrillated cellulose (NC) and hyaluronic acid (HA) offer excellent characteristics for use as bioinks due to their excellent biocompatibility and rheological properties. Cell incorporation into the bioink requires sterilisation assurance, and autoclave, β-radiation and γ-radiation are widely used sterilisation techniques in biomedicine; however, their use in 3D-bioprinting for bioinks sterilisation is still in their early stages. In this study, different sterilisation procedures were applied on NC-Alg and NC-Alg-HA bioinks and their effect on several parameters was evaluated. Results demonstrated that NC-Alg and NC-Alg-HA bioinks suffered relevant rheological and physicochemical modifications after sterilisation; yet, it can be concluded that the short cycle autoclave is the best option to sterilise both NC-Alg based cell-free bioinks, and that the incorporation of HA to the NC-Alg bioink improves its characteristics. Additionally, 3D scaffolds were bioprinted and specifically characterized as well as the D1 mesenchymal stromal cells (D1-MSCs) embedded for cell viability analysis. Notably, the addition of HA demonstrates better scaffold properties, together with higher biocompatibility and cell viability in comparison with the NC-Alg scaffolds. Thus, the use of MSCs containing NC-Alg based scaffolds may become a feasible tissue engineering approach for regenerative medicine.Author thanks the Basque Government for granted fellowship to S. Ruiz-Alonso (PRE_2020_2_0143). This study was financially supported by the Basque Country Government (IT907-16), the Ministerio de Economía, Industria y Competitividad (FEDER funds, project RTC-2016- 5451-1), Fundación Mutua Madrileña (project FMM-AP17196-2019), the Instituto de Salud Carlos III, ERDF funds (DTS19/00145) and by the Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía (project no. PY18-2470 and SOMM17/6109/UGR, FEDER Funds). Authors also wish to thank the intellectual and technical assistance from the ICTS “NANBIOSIS”, more specifically by the Drug Formulation Unit (U10) of the CIBER in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN) at the University of Basque Country (UPV/ EHU
    corecore