18 research outputs found

    CFD-study of the H-Rotor Darrius wind turbine performance in drag-lift and lift regime : Impact of type, thickness and chord length of blades

    Get PDF
    The high power coefficient of the Darrius vertical axis wind turbine lift regime has prompted researchers to concentrate their efforts on this regime, despite the fact that these turbines suffer from major problems in the drag-lift regime. In the present study, in addition to exploring the performance of the Darrius type wind turbine at blade tip speeds Ratio above 1, the effect of design factors on its performance at TSRs below 1 is also investigated. The results were extracted from numerical analysis recruiting Fluent software and the k-w SST turbulence model. The effect of blade type, thickness, and chord length on turbine performance has been investigated. The blade angle of attack (AOA) at TSR less than one was calculated using a new equation, and the results were evaluated. The numerical study of the Darrius wind turbine showed that increasing the chord length for symmetric and asymmetric airfoils from 0.1 to 0.2 m enhances the turbine performance in drag-lift regime, whereas decreasing chord length improves turbine performance at higher TSRs. The blade with a curvature of 4 % and a chord length of 0.1 m has the best performance at TSR 2.25. Increasing the thickness from 18 to 22 % of chord length exerts a negative influence on the turbine's performance in both regimes, and at lower TSRs, NACA0018 airfoil with a chord length of 0.2 m was of the optimum performance in the drag-lift regime

    Investigation of the effect of flow rate on fluid heat transfer in counter-flow helical heat exchanger using CFD method

    Get PDF
    Heat exchangers are generally used in the process of heat transfer between two different fluids separated from each other by a solid wall in order to save time and reduce expenses. Fluids behavior change by adding a wire-insert in its path. To investigate heat transfer parameters, we need to simulate the whole system. In this study, heat transfer of counter-flow helical double pipe heat exchanger was modelled by using Computational Fluid Dynamics (CFD) in "Ansys CFX". The cold and hot fluids temperature were in the ranges of 10-20CΒ° and 30-50CΒ° respectively. The Reynolds number of flows were in the range of 4Γ—103 to 42Γ—103 and the process was singlephase. The model was eventually evaluated by experimental data after simulation. The results indicated that the model was able to interpret the experimental results with correlation coefficients of 0.98 and 0.97 for hot and cold streams respectively. Furthermore, the wire-insert installed to the cold flow path caused more fluid turbulence and increased the temperature difference of the cold fluid inlet and outlet proportional to the hot fluid

    Analytical and Numerical Solution for H-type Darrieus Wind Turbine Performance at the Tip Speed Ratio of Below One

    No full text
    H-type Darrieus vertical axis wind turbines (VAWT) have omnidirectional movement capability and can get more power compared to other VAWTs at high tip speed ratios (). However, its disadvantages are self-starting inability and low generated power at less than 1. The performance of H-type Darrieus wind turbine at <1 was studied using double multiple stream tube (DMST) model and two-dimensional computational fluid dynamic (CFD) simulation. In CFD simulation, the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations were used and the turbulence model was solved with SST k-Ο‰ model. The performance of fifteen various wind turbines was determined at fourteen wind velocities by two solution methods. The effect of chord length, solidity, Reynolds number and Height to Diameter (H/D) ratio were investigated on generated torque, power and the time required to reach =0.1. Increasing in the moment of inertia due to the increasing in required time to reach =0.1. In the low TSRs, the wind turbines can generate higher torque and power in high Re numbers and solidities. The required time was reduced by an increase in Re number and solidity. Finally, the best ratio of H/D of H-type Darrieus wind turbines was defined to improve the turbine performance

    Analytical Study of the Impact of Solidity, Chord Length, Number of Blades, Aspect Ratio and Airfoil Type on H-Rotor Darrieus Wind Turbine Performance at Low Reynolds Number

    No full text
    The use of wind energy can be traced back thousands of years to many ancient times. Among the tools used for converting wind energy was the vertical-axis wind turbine (vawt). Investigating the performance of this type of turbine is an interesting topic for researchers. The appropriate correlation between the Double Multiple Stream Tube (DMST) model and the experimental results has led researchers to pay distinct attention to this model for vawt simulation. In this study, using the aforementioned model, the appropriate range of important wind turbine design parameters was determined. First, the model outcome was validated based on experimental results and then, the performances of 144 different turbine types were simulated with respect to chord length, number of blades, H/D ratio and airfoil type. Chord length was evaluated at three levels, 0.1, 0.15 and 0.2 m, number of blades 2, 3 and 4, Height to Diameters (H/D) ratio of 0.5, 1, 1.5 and 2, and four types of airfoils, NACA0012, NACA0018, NACA4412 and NACA4418. Simulation was performed at a low Reynolds number (Re ≀ 105) and at four TSRs, 1, 2, 3 and 4. The results show that wind turbines perform best at low TSRs when they have longer chords, more blades, and a higher H/D ratio, but this trend reverses at high TSRs. Among the four types of airfoils evaluated, the NACA4412 airfoils showed a better performance at TSRs 1 to 3

    Analytical Study of the Impact of Solidity, Chord Length, Number of Blades, Aspect Ratio and Airfoil Type on H-Rotor Darrieus Wind Turbine Performance at Low Reynolds Number

    No full text
    The use of wind energy can be traced back thousands of years to many ancient times. Among the tools used for converting wind energy was the vertical-axis wind turbine (vawt). Investigating the performance of this type of turbine is an interesting topic for researchers. The appropriate correlation between the Double Multiple Stream Tube (DMST) model and the experimental results has led researchers to pay distinct attention to this model for vawt simulation. In this study, using the aforementioned model, the appropriate range of important wind turbine design parameters was determined. First, the model outcome was validated based on experimental results and then, the performances of 144 different turbine types were simulated with respect to chord length, number of blades, H/D ratio and airfoil type. Chord length was evaluated at three levels, 0.1, 0.15 and 0.2 m, number of blades 2, 3 and 4, Height to Diameters (H/D) ratio of 0.5, 1, 1.5 and 2, and four types of airfoils, NACA0012, NACA0018, NACA4412 and NACA4418. Simulation was performed at a low Reynolds number (Re &le; 105) and at four TSRs, 1, 2, 3 and 4. The results show that wind turbines perform best at low TSRs when they have longer chords, more blades, and a higher H/D ratio, but this trend reverses at high TSRs. Among the four types of airfoils evaluated, the NACA4412 airfoils showed a better performance at TSRs 1 to 3

    Applying Solar Energy in the Combination of Solar Dryer with Olive Harvesting Machine to Reduce Energy Losses

    No full text
    In recent years, leveraging the amount of energy loss occurring in different fields of human activity has captured the attention of researchers. Harvesting and drying processes can be integrated in order to reduce energy losses. The present research work seeks to pinpoint the association between the harvesting and drying processes as well as to make optimal use of both processes so as to decrease the level of energy loss and apply the renewable energies to the food supply chain. The olive harvesting machine was designed and evaluated, and the olives harvested in the solar dryer were placed in the solar dryer as the input materials. To obtain the evaluation of the experimental tests&rsquo; purpose, Mari cultivar was used. Following this trend was the evaluation of the olive harvesting machine and its comparison with the manual harvesting method. Having separated the olives from the tree through use of the harvesting machine designed and made, a solar dryer was used to accommodate the olives in order to make the final examination concerning any damage to olives. Findings of the study indicated up to 92% separation of the olive fruits by the olive harvester. It was also found that there is a 29.47 harvest efficiency for the olive harvester. In addition, evaluation of the solar dryer emphasized that an increase in the temperature and velocity of the inlet air results in a rapid decrease in the olive moisture

    Applying Solar Energy in the Combination of Solar Dryer with Olive Harvesting Machine to Reduce Energy Losses

    No full text
    In recent years, leveraging the amount of energy loss occurring in different fields of human activity has captured the attention of researchers. Harvesting and drying processes can be integrated in order to reduce energy losses. The present research work seeks to pinpoint the association between the harvesting and drying processes as well as to make optimal use of both processes so as to decrease the level of energy loss and apply the renewable energies to the food supply chain. The olive harvesting machine was designed and evaluated, and the olives harvested in the solar dryer were placed in the solar dryer as the input materials. To obtain the evaluation of the experimental tests’ purpose, Mari cultivar was used. Following this trend was the evaluation of the olive harvesting machine and its comparison with the manual harvesting method. Having separated the olives from the tree through use of the harvesting machine designed and made, a solar dryer was used to accommodate the olives in order to make the final examination concerning any damage to olives. Findings of the study indicated up to 92% separation of the olive fruits by the olive harvester. It was also found that there is a 29.47 harvest efficiency for the olive harvester. In addition, evaluation of the solar dryer emphasized that an increase in the temperature and velocity of the inlet air results in a rapid decrease in the olive moisture

    Replication of HSV-CD80 recombinant virus in BM-derived DCs.

    No full text
    <p>Subconfluent monolayers of DCs isolated from C57BL/6, 129SVE, and BALB/c mice were infected with 10 PFU/cell of HSV-CD80 or parental virus as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0087617#s4" target="_blank">Materials and Methods</a>. In some experiments DCs from C57BL/6 mice were infected with 1 PFU/cell of each virus, while DCs from 129SVE were infected with 10 PFU/cell of wt HSV-1 strain McKrae. Virus yield was determined at the indicated times PI by standard plaque assays. Panels: A) DCs from C57BL/6 mice were infected at 1 PFU/cell of HSV-CD80 or parental virus; B) DCs from C57BL/6 mice were infected at 10 PFU/cell of HSV-CD80 or parental virus; C) DCs from 129SVE mice were infected at 10 PFU/cell of HSV-CD80, parental, and wt McKrae viruses; and D) DCs from BALB/c mice were infected at 10 PFU/cell of HSV-CD80 or parental virus. Each point represents the mean Β± SEM (nβ€Š=β€Š6) from two separate experiments.</p
    corecore