20 research outputs found

    Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly

    Get PDF
    The genetic causes of malformations of cortical development (MCD) remain largely unknown. Here we report the discovery of multiple pathogenic missense mutations in TUBG1, DYNC1H1 and KIF2A, as well as a single germline mosaic mutation in KIF5C, in subjects with MCD. We found a frequent recurrence of mutations in DYNC1H1, implying that this gene is a major locus for unexplained MCD. We further show that the mutations in KIF5C, KIF2A and DYNC1H1 affect ATP hydrolysis, productive protein folding and microtubule binding, respectively. In addition, we show that suppression of mouse Tubg1 expression in vivo interferes with proper neuronal migration, whereas expression of altered gamma-tubulin proteins in Saccharomyces cerevisiae disrupts normal microtubule behavior. Our data reinforce the importance of centrosomal and microtubule-related proteins in cortical development and strongly suggest that microtubule-dependent mitotic and postmitotic processes are major contributors to the pathogenesis of MCD

    Treatment Patterns and Use of Resources in Patients With Tuberous Sclerosis Complex: Insights From the TOSCA Registry

    Get PDF
    Tuberous Sclerosis Complex (TSC) is a rare autosomal-dominant disorder caused by mutations in the TSC1 or TSC2 genes. Patients with TSC may suffer from a wide range of clinical manifestations; however, the burden of TSC and its impact on healthcare resources needed for its management remain unknown. Besides, the use of resources might vary across countries depending on the country-specific clinical practice. The aim of this paper is to describe the use of TSC-related resources and treatment patterns within the TOSCA registry. A total of 2,214 patients with TSC from 31 countries were enrolled and had a follow-up of up to 5 years. A search was conducted to identify the variables containing both medical and non-medical resource use information within TOSCA. This search was performed both at the level of the core project as well as at the level of the research projects on epilepsy, subependymal giant cell astrocytoma (SEGA), lymphangioleiomyomatosis (LAM), and renal angiomyolipoma (rAML) taking into account the timepoints of the study, age groups, and countries. Data from the quality of life (QoL) research project were analyzed by type of visit and age at enrollment. Treatments varied greatly depending on the clinical manifestation, timepoint in the study, and age groups. GAB Aergics were the most prescribed drugs for epilepsy, and mTOR inhibitors are dramatically replacing surgery in patients with SEGA, despite current recommendations proposing both treatment options. mTOR inhibitors are also becoming common treatments in rAML and LAM patients. Forty-two out of the 143 patients (29.4%) who participated in the QoL research project reported inpatient stays over the last year. Data from non-medical resource use showed the critical impact of TSC on job status and capacity. Disability allowances were more common in children than adults (51.1% vs 38.2%). Psychological counseling, social services and social worker services were needed by <15% of the patients, regardless of age. The long-term nature, together with the variability in its clinical manifestations, makes TSC a complex and resource-demanding disease. The present study shows a comprehensive picture of the resource use implications of TSC

    Natural clusters of tuberous sclerosis complex (TSC)-associated neuropsychiatric disorders (TAND): new findings from the TOSCA TAND research project.

    Get PDF
    BACKGROUND: Tuberous sclerosis complex (TSC)-associated neuropsychiatric disorders (TAND) have unique, individual patterns that pose significant challenges for diagnosis, psycho-education, and intervention planning. A recent study suggested that it may be feasible to use TAND Checklist data and data-driven methods to generate natural TAND clusters. However, the study had a small sample size and data from only two countries. Here, we investigated the replicability of identifying natural TAND clusters from a larger and more diverse sample from the TOSCA study. METHODS: As part of the TOSCA international TSC registry study, this embedded research project collected TAND Checklist data from individuals with TSC. Correlation coefficients were calculated for TAND variables to generate a correlation matrix. Hierarchical cluster and factor analysis methods were used for data reduction and identification of natural TAND clusters. RESULTS: A total of 85 individuals with TSC (female:male, 40:45) from 7 countries were enrolled. Cluster analysis grouped the TAND variables into 6 clusters: a scholastic cluster (reading, writing, spelling, mathematics, visuo-spatial difficulties, disorientation), a hyperactive/impulsive cluster (hyperactivity, impulsivity, self-injurious behavior), a mood/anxiety cluster (anxiety, depressed mood, sleep difficulties, shyness), a neuropsychological cluster (attention/concentration difficulties, memory, attention, dual/multi-tasking, executive skills deficits), a dysregulated behavior cluster (mood swings, aggressive outbursts, temper tantrums), and an autism spectrum disorder (ASD)-like cluster (delayed language, poor eye contact, repetitive behaviors, unusual use of language, inflexibility, difficulties associated with eating). The natural clusters mapped reasonably well onto the six-factor solution generated. Comparison between cluster and factor solutions from this study and the earlier feasibility study showed significant similarity, particularly in cluster solutions. CONCLUSIONS: Results from this TOSCA research project in an independent international data set showed that the combination of cluster analysis and factor analysis may be able to identify clinically meaningful natural TAND clusters. Findings were remarkably similar to those identified in the earlier feasibility study, supporting the potential robustness of these natural TAND clusters. Further steps should include examination of larger samples, investigation of internal consistency, and evaluation of the robustness of the proposed natural clusters

    Clinical Characteristics of Subependymal Giant Cell Astrocytoma in Tuberous Sclerosis Complex

    Get PDF
    BACKGROUND: This study evaluated the characteristics of subependymal giant cell astrocytoma (SEGA) in patients with tuberous sclerosis complex (TSC) entered into the TuberOus SClerosis registry to increase disease Awareness (TOSCA). METHODS: The study was conducted at 170 sites across 31 countries. Data from patients of any age with a documented clinical visit for TSC in the 12 months preceding enrollment or those newly diagnosed with TSC were entered. RESULTS: SEGA were reported in 554 of 2,216 patients (25%). Median age at diagnosis of SEGA was 8 years (range, 18 years. SEGA were symptomatic in 42.1% of patients. Symptoms included increased seizure frequency (15.8%), behavioural disturbance (11.9%), and regression/loss of cognitive skills (9.9%), in addition to those typically associated with increased intracranial pressure. SEGA were significantly more frequent in patients with TSC2 compared to TSC1 variants (33.7 vs. 13.2 %, p < 0.0001). Main treatment modalities included surgery (59.6%) and mammalian target of rapamycin (mTOR) inhibitors (49%). CONCLUSIONS: Although SEGA diagnosis and growth typically occurs during childhood, SEGA can occur and grow in both infants and adults

    Newly Diagnosed and Growing Subependymal Giant Cell Astrocytoma in Adults With Tuberous Sclerosis Complex: Results From the International TOSCA Study

    Get PDF
    The onset and growth of subependymal giant cell astrocytoma (SEGA) in tuberous sclerosis complex (TSC) typically occurs in childhood. There is minimal information on SEGA evolution in adults with TSC. Of 2,211 patients enrolled in TOSCA, 220 of the 803 adults (27.4%) ever had a SEGA. Of 186 patients with SEGA still ongoing in adulthood, 153 (82.3%) remained asymptomatic, and 33 (17.7%) were reported to ever have developed symptoms related to SEGA growth. SEGA growth since the previous scan was reported in 39 of the 186 adults (21%) with ongoing SEGA. All but one patient with growing SEGA had mutations in TSC2. Fourteen adults (2.4%) were newly diagnosed with SEGA during follow-up, and majority had mutations in TSC2. Our findings suggest that surveillance for new or growing SEGA is warranted also in adulthood, particularly in patients with mutations in TSC2

    Consultations de routine aux urgences : faut-il gérer ou lutter ?

    No full text
    International audienc

    Consultations de routine aux urgences : faut-il gérer ou lutter ?

    No full text
    International audienc

    Influence of mitochondrial DNA level on cellular energy metabolism: implications for mitochondrial diseases

    No full text
    The total amount of cellular mitochondrial DNA (mtDNA) varies widely and seems to be related to the nature and metabolic state of tissues and cells in culture. It is not known, however, whether this variation has any significance in vivo, and to which extent it regulates energy production. To better understand the importance of the cellular mtDNA level, we studied the influence of a gradual reduction of mtDNA copy number on oxidative phosphorylation in two models: (a) a control human cell line treated with different concentrations of 2', 3'-dideoxycytidine, a nucleoside analogue that inhibits mtDNA replication by interfering with mitochondrial DNA polymerase gamma, and (b) a cell line derived from a patient presenting mtDNA depletion. The two models were used to construct biochemical and phenotypic threshold curves. Our results show that oxidative phosphorylation activities are under a tight control by the amount of mtDNA in the cell, and that the full complement of mtDNA molecules are necessary to maintain a normal energy production level

    Mutations in the AP1S2 gene encoding the sigma 2 subunit of the adaptor protein 1 complex are associated with syndromic X‐linked mental retardation with hydrocephalus and calcifications in basal ganglia

    No full text
    Fried syndrome, first described in 1972, is a rare X‐linked mental retardation that has been mapped by linkage to Xp22. Clinical characteristics include mental retardation, mild facial dysmorphism, calcifications of basal ganglia and hydrocephalus. A large four‐generation family in which the affected males have striking clinical features of Fried syndrome were investigated for linkage to X‐chromosome markers; the results showed that the gene for this condition lies within the interval DXS7109–DXS7593 in Xp22.2. In total, 60 candidate genes located in this region, including AP1S2, which was recently shown to be involved in mental retardation, were screened for mutations. A mutation in the third intron of AP1S2 was found in all affected male subjects in this large French family. The mutation resulted in skipping of exon 3, predicting a protein with three novel amino‐acids and with termination at codon 64. In addition, the first known large Scottish family affected by Fried syndrome was reinvestigated, and a new nonsense mutation, p.Gln66X, was found in exon 3. Using CT, both affected patients from the French family who were analysed had marked calcifications of the basal ganglia, as previously observed in the first Scottish family, suggesting that the presence of distinctive basal ganglia calcification is an essential parameter to recognise this syndromic disorder. It may be possible to use this feature to identify families with X‐linked mental retardation that should be screened for mutations in AP1S2
    corecore