11,391 research outputs found

    Transport in graphene antidot barriers and tunneling devices

    Full text link
    Periodic arrays of antidots, i.e. nanoscale perforations, in graphene enable tight confinement of carriers and efficient transport barriers. Such barriers evade the Klein tunneling mechanism by being of the mass rather than electrostatic type. While all graphene antidot lattices (GALs) may support directional barriers, we show, however, that a full transport gap exists only for certain orientations of the GAL. Moreover, we assess the applicability of gapped graphene and the Dirac continuum approach as simplified models of various antidot structures showing that, in particular, the former is an excellent approximation for transport in GALs supporting a bulk band gap. Finally, the transport properties of a GAL based resonant tunneling diode is analyzed indicating that such advanced graphene based devices may, indeed, be realized using GAL structures.Comment: 12 pages, 9 figures, accepted for publication on Journal of Applied Physic

    Tight-binding study of the magneto-optical properties of gapped graphene

    Full text link
    We study the optical properties of gapped graphene in presence of a magnetic field. We consider a model based on the Dirac equation, with a gap introduced via a mass term, for which analytical expressions for the diagonal and Hall optical conductivities can be derived. We discuss the effect of the mass term on electron-hole symmetry and π\pi-π∗\pi^* symmetry and its implications for the optical Hall conductivity. We compare these results with those obtained using a tight-binding model, in which the mass is modeled via a staggered potential and a magnetic field is included via a Peierls substitution. Considering antidot lattices as the source of the mass term, we focus on the limit where the mass term dominates the cyclotron energy. We find that a large gap quenches the effect of the magnetic field. The role of overlap between neighboring π\pi orbitals is investigated, and we find that the overlap has pronounced consequences for the optical Hall conductivity that are missed in the Dirac model.Comment: 10 pages, 9 figures, submitted for Physical Review

    Properties of derivations on some convolution algebras

    Full text link
    For all the convolution algebras L1[0,1), Lloc1L^1[0,1),\ L^1_{\text{loc}} and A(ω)=⋂nL1(ωn)A(\omega)=\bigcap_n L^1(\omega_n), the derivations are of the form Dμf=Xf∗μD_{\mu} f=Xf*\mu for suitable measures μ\mu, where (Xf)(t)=tf(t)(Xf)(t)=tf(t). We describe the (weakly) compact as well as the (weakly) Montel derivations on these algebras in terms of properties of the measure μ\mu. Moreover, for all these algebras we show that the extension of DμD_{\mu} to a natural dual space is weak-star continuous.Comment: 12 page

    Exact polarizability and plasmon resonances of partly buried nanowires

    Full text link
    The electrostatic polarizability for both vertical and horizontal polarization of two conjoined half-cylinders partly buried in a substrate is derived in an analytical closed-form expression. Using the derived analytical polarizabilities we analyze the localized surface plasmon resonances of three important metal nanowire configurations: (1) a half-cylinder, (2) a half-cylinder on a substrate, and (3) a cylinder partly buried in a substrate. Among other results we show that the substrate plays an important role for spectral location of the plasmon resonances. Our analytical results enable an easy, fast, and exact analysis of many complicated plasmonic nanowire configurations including nanowires on substrates. This is important both for comparison with experimental data, for applications, and as benchmarks for numerical methods

    Symplectic integration and physical interpretation of time-dependent coupled-cluster theory

    Full text link
    The formulation of the time-dependent Schrodinger equation in terms of coupled-cluster theory is outlined, with emphasis on the bivariational framework and its classical Hamiltonian structure. An indefinite inner product is introduced, inducing physical interpretation of coupled-cluster states in the form of transition probabilities, autocorrelation functions, and explicitly real values for observables, solving interpretation issues which are present in time-dependent coupled-cluster theory and in ground-state calculations of molecular systems under influence of external magnetic fields. The problem of the numerical integration of the equations of motion is considered, and a critial evaluation of the standard fourth-order Runge--Kutta scheme and the symplectic Gauss integrator of variable order is given, including several illustrative numerical experiments. While the Gauss integrator is stable even for laser pulses well above the perturbation limit, our experiments indicate that a system-dependent upper limit exists for the external field strengths. Above this limit, time-dependent coupled-cluster calculations become very challenging numerically, even in the full configuration interaction limit. The source of these numerical instabilities is shown to be rapid increases of the amplitudes as ultrashort high-intensity laser pulses pump the system out of the ground state into states that are virtually orthogonal to the static Hartree-Fock reference determinant.Comment: 14 pages, 13 figure

    Quantum spill out in few-nanometer metal gaps: Effect on gap plasmons and reflectance from ultrasharp groove arrays

    Get PDF
    Plasmons in ultranarrow metal gaps are highly sensitive to the electron density profile at the metal surfaces. Using a fully quantum mechanical approach, we study the effects of electron spill-out on gap plasmons and reflectance from ultrasharp metal grooves. We demonstrate that the mode index of ultranarrow gap plasmons converges to the bulk refractive index in the limit of vanishing gap and, thereby, rectify the unphysical divergence found in classical models. Surprisingly, spill-out also significantly increases the plasmonic absorption for few-nanometer gaps and lowers the reflectance from arrays of ultrasharp metal grooves. These findings are explained in terms of enhanced gap plasmon absorption taking place inside the gap 1-2 {\AA} from the walls and delocalization near the groove bottom. Reflectance calculations taking spill-out into account are shown to be in much better agreement with measurements compared with classical models

    Field-induced dissociation of two-dimensional excitons in transition-metal dichalcogenides

    Get PDF
    Generation of photocurrents in semiconducting materials requires dissociation of excitons into free charge carriers. While thermal agitation is sufficient to induce dissociation in most bulk materials, an additional push is required to induce efficient dissociation of the strongly bound excitons in monolayer transition-metal dichalcogenides (TMDs). Recently, static in-plane electric fields have proven to be a promising candidate. In the present paper, we introduce a numerical procedure, based on exterior complex scaling, capable of computing field-induced exciton dissociation rates for a wider range of field strengths than previously reported in literature. We present both Stark shifts and dissociation rates for excitons in various TMDs calculated within the Mott-Wannier model. Here, we find that the field induced dissociation rate is strongly dependent on the dielectric screening environment. Furthermore, applying weak-field asymptotic theory (WFAT) to the Keldysh potential, we are able to derive an analytical expression for exciton dissociation rates in the weak-field region

    Quantum spill-out in nanometer-thin gold slabs: Effect on plasmon mode index and plasmonic absorption

    Get PDF
    A quantum mechanical approach and local response theory are applied to study plasmons propagating in nanometer-thin gold slabs sandwiched between different dielectrics. The metal slab supports two different kinds of modes, classified as long-range and short-range plasmons. Quantum spill-out is found to significantly increase the imaginary part of their mode indices, and, surprisingly, even for slabs wide enough to approach bulk the increase is 20%. This is explained in terms of enhanced plasmonic absorption, which mainly takes place at narrow peaks located near the slab surface

    Optical Hall conductivity in bulk and nanostructured graphene beyond the Dirac approximation

    Full text link
    We present a perturbative method for calculating the optical Hall conductivity in a tight-binding framework based on the Kubo formalism. The method involves diagonalization only of the Hamiltonian in absence of the magnetic field, and thus avoids the computational problems usually arising due to the huge magnetic unit cells required to maintain translational invariance in presence of a Peierls phase. A recipe for applying the method to numerical calculations of the magneto-optical response is presented. We apply the formalism to the case of ordinary and gapped graphene in a next-nearest neighbour tight-binding model as well as graphene antidot lattices. In both case, we find unique signatures in the Hall response, that are not captured in continuum (Dirac) approximations. These include a non-zero optical Hall conductivity even when the chemical potential is at the Dirac point energy. Numerical results suggest that this effect should be measurable in experiments.Comment: 7 pages, 4 figures, accepted in Physical Review

    Hypergeometric resummation of self-consistent sunset diagrams for electron-boson quantum many-body systems out of equilibrium

    Get PDF
    A newly developed hypergeometric resummation technique [H. Mera et al., Phys. Rev. Lett. 115, 143001 (2015)] provides an easy-to-use recipe to obtain conserving approximations within the self-consistent nonequilibrium many-body perturbation theory. We demonstrate the usefulness of this technique by calculating the phonon-limited electronic current in a model of a single-molecule junction within the self-consistent Born approximation for the electron-phonon interacting system, where the perturbation expansion for the nonequilibrium Green function in powers of the free bosonic propagator typically consists of a series of non-crossing \sunset" diagrams. Hypergeometric resummation preserves conservation laws and it is shown to provide substantial convergence acceleration relative to more standard approaches to self-consistency. This result strongly suggests that the convergence of the self-consistent \sunset" series is limited by a branch-cut singularity, which is accurately described by Gauss hypergeometric functions. Our results showcase an alternative approach to conservation laws and self-consistency where expectation values obtained from conserving perturbation expansions are \summed" to their self-consistent value by analytic continuation functions able to mimic the convergence-limiting singularity structure.Comment: 13 pages, 6 figure
    • …
    corecore